Answer:
spectroscope, optical device used in spectral analysis for producing and measuring their wavelengths and intensities (see spectrum). When a material is heated to fire, it emits light, typical of the atomic composition of the material.
Explanation:
The balanced net equation for
BaCl2 (aq) + H2SO4(aq) → BaSO4(s) + HCl (aq) is
Ba^2+(aq) +SO4^2- → BaSO4 (s)
<u><em>Explanation</em></u>
Ionic equation is a chemical equation in which electrolytes in aqueous solution are written as dissociated ions.
<u>ionic equation is written using the below steps</u>
Step 1: <em>write a balanced molecular equation</em>
BaCl2 (aq) +H2SO4 (aq)→ BaSO4(s) +2HCl (aq)
Step 2: <em>Break all soluble electrolytes in to ions</em>
= Ba^2+ (aq) + 2Cl^-(aq) + 2H^+(aq) + SO4^2-(aq)→ BaSO4(s) + 2H^+(aq) +2Cl^- (aq)
step 3: <em>cancel the spectator ions in both side of equation ( ions which do not take place in the reaction)</em>
<em> </em><em> =</em> 2Cl^- and 2H^+ ions
Step 4: <em>write the final net equation</em>
<em> Ba^2+(aq) + SO4^2-(aq)→ BaSO4(s</em><em>)</em>
I think it might be the last answer.... Or the second one. Yeah i think it’s the second one
Answer:
45.8 mL
Explanation:
If all variables are held constant, the new volume can be found using the Boyle's Law equation. The equation looks like this:
P₁V₁ = P₂V₂
In this equation, "P₁" and "V₁" represent the initial pressure and volume. "P₂" and "V₂" represent the final pressure and volume. You can find the new volume by plugging the given values into the equation and simplifying.
P₁ = 3.1 atm P₂ = 10.5 atm
V₁ = 155 mL V₂ = ? mL
P₁V₁ = P₂V₂ <----- Boyle's Law equation
(3.1 atm)(155 mL) = (10.5 atm)V₂ <----- Insert values
480.5 = (10.5 atm)V₂ <----- Multiply 3.1 and 155
45.8 = V₂ <----- Divide both sides by 10.5