Answer:
1.2 M
Explanation:
If you use the dilution equation (M1V1=M2V2), you end up with (50)(12)=(500)(M2), and when you solve for M2 you get 1.2 M.
Cl is stable as a diatomic molecule where the 2 Cl atoms are held together by a covalent bond
molar mass of the diatomic molecule is 70.9 g/mol
therefore 70.9 g of Cl₂ is - 1 mol
then 140 g of Cl₂ is - 1/70.9 x 140 = 1.97 mol
there are 1.97 mol of Cl₂ present
Answer: This would be considered concentrated because if you're upping the recipe on your own accord, it would be way more sour, causing the lemonade to be more concentrated. It would be diluted if you added less than 2 lemons.
<h3>
Answer:</h3>
3.0 × 10²³ molecules AgNO₃
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Writing Compounds
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
85 g AgNO₃ (silver nitrate)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[PT] Molar Mass of Ag - 107.87 g/mol
[PT] Molar Mass of N - 14.01 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of AgNO₃ - 107.87 + 14.01 + 3(16.00) = 169.88 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
3.01313 × 10²³ molecules AgNO₃ ≈ 3.0 × 10²³ molecules AgNO₃