1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisov135 [29]
3 years ago
15

A number, truncated to 1 dp, is equal to 11.9, what are the upper and lower bounds

Mathematics
1 answer:
Rom4ik [11]3 years ago
6 0
I think the answer would be 11.85 11.94
You might be interested in
Plzzzzz help right answer gets biranly
Temka [501]

Answer:

33!!!!!!!!!!!!!!!!!!!!

7 0
3 years ago
The numbers in the diagram below indicate the lengths of the sides of a triangle. Bernadette drew the following triangle and cla
xz_007 [3.2K]

Answer:

It's not a right triangle, there isn't a right angle anywhere there.

Also, it's not applicable via pythagorean theorem

Step-by-step explanation:

8 0
2 years ago
Iftan A = 39 and sin B = 3 and angles A and B are in Quadrant I, find the value<br> of tan(A + B).
Allushta [10]
The answer is A yupppp
3 0
2 years ago
Suppose your average, after taking 4 quizzes, is 73(out of 100). What must your average be on the next 5 quizzes to increase you
pychu [463]

x = average of next 5 quizzes

4 * 73 = first 4 quizzes

There will be a total of 4 +5 = 9 quizzes

Average of all quizzes = 88 = (4*73+5x)/9

 

9*88 = 9*(292 +5x)/9

792 = 292 + 5x

500 = 5x

X = 500/5 = 100

<span> Next 5 quizzes need to average 100</span>


8 0
3 years ago
What is the derivative of 1/square root 4x.
Bumek [7]

Answer:

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

Exponential Properties

  • Exponential Property [Rewrite]:                                                                   \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Property [Root Rewrite]:                                                           \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)  

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]

<u>Step 2: Differentiate</u>

  1. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'
  3. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'
  4. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'
  5. Derivative Rule [Basic Power Rule]:                                                             \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

5 0
3 years ago
Other questions:
  • In triangle ABC, the segments drawn from the vertices intersect at point G. Segment FG measures 6 cm, and segment FC measures 18
    5·2 answers
  • Suppose that $9500 is placed in an account that pays 4% interest compounded each year.
    13·1 answer
  • 50 pts !!! What is the product of x+2 and x-7? Write your answer in standard form.
    12·2 answers
  • What type of transformation is used<br> when the line y = vx is transformed<br> into y= 5x?
    13·1 answer
  • Which fraction is equivalent to 1/7
    11·2 answers
  • HELPPPP PLEASEEEEE <br><br><br> What is g(f(x)) when f(x)=5x+3 and g(x) =3x^2+3
    11·1 answer
  • Need help with this.
    13·1 answer
  • Someone please help me I’ll give out brainliest please dont answer if you don’t know
    9·1 answer
  • I need help or my math teacher will call my parents up about it and I will die
    12·1 answer
  • I need help with problem 11
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!