Answer:
Force on superball will be 
Explanation:
We have given mass of superball m = 52 gram = 0.052 kg
Velocity change from 20 m/sec downward to 14 m/sec upward
Let downward velocity is positive then upward velocity is negative
So downward velocity is + 20 m/sec and upward velocity is -14 m/sec
Time is given as 1800 sec
We know that acceleration is rate of change of velocity
So 
According to newton second law
Force = ma = 0.052×0.0188 
To solve this problem it is necessary to apply the concepts related to intensity as a function of power and area.
Intensity is defined to be the power per unit area carried by a wave. Power is the rate at which energy is transferred by the wave. In equation form, intensity I is

The area of a sphere is given by

So replacing we have to

Since the question tells us to find the proportion when

So considering the two intensities we have to


The ratio between the two intensities would be

The power does not change therefore it remains constant, which allows summarizing the expression to

Re-arrange to find 



Therefore the intensity at five times this distance from the source is 
Answer:
6666.67 Newtons
Explanation:
The formula F=ma (force is equal to mass multiplied by acceleration) can be used to calculate the answer to this question.
In this case:
- mass= 0.1mg= 1*10^-7 kg
- velocity= 4.00*10^3 m/s
- time= 6.00*10^-8 s
Using velocity and time, acceleration can be calculated as:
Substituting these values into the formula F=ma, the answer is:
- F= (1*10^-7)kg * (6.667*10^10) m/s²
- F= 6666.67 Newtons of force
Answer:
Maybe A is the correct answer
The mass contributes with the time of thermal energy transfer with respect to the material type but most importantly the material type will determine rate at which the material absorbs the transfer of heat or thermal energy by either three types, conduction, convection and radiation.