Answer:
F =
.
Explanation:
Gravitational force between two objects of masses
kept at a distance r is given by the formula
F = 
Here ,
= 2m
= 
Thus , F = 
F =
.
The solution would be like
this for this specific problem:
<span>
The force on m is:</span>
<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] ->
1
The force on 2m is:</span>
<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2]
-> 2
From (1), you’ll get M = 2mx^2 / L^2 and from
(2) you get M = m(L - x)^2 / L^2
Since the Ms are the same, then
2mx^2 / L^2 = m(L - x)^2 / L^2
2x^2 = (L - x)^2
xsqrt2 = L - x
x(1 + sqrt2) = L
x = L / (sqrt2 + 1) From here, we rationalize.
x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1)
x = L(sqrt2 - 1) / (2 - 1)
x = L(sqrt2 - 1) </span>
= 0.414L
<span>Therefore, the third particle should be located the 0.414L x
axis so that the magnitude of the gravitational force on both particle 1 and
particle 2 doubles.</span>
Answer:
I think D am not pretty show
Answer:
1.
Firstly removing off one strip and it leaves electrons behind, so the strip becomes positively charged.
2. The roll however is not negatively charged because it is "earthed " by the hand holding it, thus excess negatives repel each other away through the hand.
3.Tearing off the next strip and once more it leaves electrons behind, the new strip is also positively charged and will repel the first strip.
4. Then, tear two strips apart and one will leave electrons behind on the other. Meaning that one strip is positive and the other is negative and they will attract each other.