Explanation:
Here is the answer hope you do well
Answer:
1.86% NH₃
Explanation:
The reaction that takes place is:
- HCl(aq) + NH₃(aq) → NH₄Cl(aq)
We <u>calculate the moles of HCl that reacted</u>, using the volume used and the concentration:
- 32.27 mL ⇒ 32.27/1000 = 0.03227 L
- 0.1080 M * 0.03227 L = 3.4852x10⁻³ mol HCl
The moles of HCl are equal to the moles of NH₃, so now we <u>calculate the mass of NH₃ that was titrated</u>, using its molecular weight:
- 3.4852x10⁻³ mol NH₃ * 17 g/mol = 0.0592 g NH₃
The weight percent NH₃ in the aliquot (and thus in the diluted sample) is:
- 0.0592 / 12.949 * 100% = 0.4575%
Now we <u>calculate the total mass of NH₃ in the diluted sample</u>:
Diluted sample total mass = Aqueous waste Mass + Water mass = 23.495 + 72.311 = 95.806 g
- 0.4575% * 95.806 g = 0.4383 g NH₃
Finally we calculate the weight percent NH₃ in the original sample of aqueous waste:
- 0.4383 g NH₃ / 23.495 g * 100% = 1.86% NH₃
A native metal is any metal that is found<span> in its metallic </span>form<span>, either </span>pure<span> or as an alloy, in </span>nature<span>. ... Over geological time scales, very few metals can resist natural weathering processes ! hope i helped!</span>
Answer:
The new volume will be 3.67 L.
Explanation:
As the volume increases, the gas particles (atoms or molecules) take longer to reach the walls of the container and therefore collide with them fewer times per unit of time. This means that the pressure will be lower because it represents the frequency of collisions of the gas against the walls. In this way pressure and volume are related, determining Boyle's law which says:
"The volume occupied by a certain gaseous mass at constant temperature is inversely proportional to pressure"
Boyle's law is expressed mathematically as:
P*V=k
Now it is possible to assume that you have a certain volume of gas V1 that is at a pressure P1 at the beginning of the experiment. If you vary the volume of gas to a new value V2, then the pressure will change to P2, and it will be fulfilled:
P1 * V1 = P2 * V2
In this case:
- P1= 1.85 atm
- V1= 4.64 L
- P2= 2.34 atm
- V2= ?
Replacing:
1.85 atm* 4.64 L= 2.34 atm* V2
Solving:

V2= 3.67 L
<u><em>The new volume will be 3.67 L.</em></u>
For 60.0 g sample, if it remains 60-52.5=7.5 g, it will go through 60->30->15->7.5, 3 half-life. So the time being taken is 269*3=807 years.