The correct answer is Potassium Chloride.
<span />
Answer:
Part A = The mass of sulfur is 6.228 grams
Part B = The mass of 1 silver atom is 1.79 * 10^-22 grams
Explanation:
Part A
Step 1: Data given
A mixture of carbon and sulfur has a mass of 9.0 g
Mass of the product = 27.1 grams
X = mass carbon
Y = mass sulfur
x + y = 9.0 grams
x = 9.0 - y
x(molar mass CO2/atomic mass C) + y(molar mass SO2/atomic mass S) = 22.6
(9 - y)*(44.01/12.01) + y(64.07/32.07)
(9-y)(3.664) + y(1.998)
32.976 - 3.664y + 1.998y = 22.6
-1.666y = -10.376
y = 6.228 = mass sulfur
x = 9.0 - 6.228 = 2.772 grams = mass C
The mass of sulfur is 6.228 grams
Part B
Calculate the mass, in grams, of a single silver atom (mAg = 107.87 amu ).
Calculate moles of 1 silver atom
Moles = 1/ 6.022*10^23
Moles = 1.66*10^-24 moles
Mass = moles * molar mass
Mass = 1.66*10 ^-24 moles *107.87
Mass = 1.79 * 10^-22 grams
The mass of 1 silver atom is 1.79 * 10^-22 grams
Answer:
hope the inserted image will help :)
Explanation:
Te is the answer between the two
Answer:
Approximately
.
Explanation:
The Lyman Series of a hydrogen atom are due to electron transitions from energy levels
to the ground state where
. In this case, the electron responsible for the line started at
and transitioned to
A hydrogen atom contains only one electron. As a result, Bohr Model provides a good estimate of that electron's energy at different levels.
In Bohr's Model, the equation for an electron at energy level
(
(note the negative sign in front of the fraction,)
where
is a constant.
is the atomic number of that atom.
for hydrogen.
is the energy level of that electron.
The electron that produced the
line was initially at the
.
The electron would then transit to energy level
. Its energy would become:
.
The energy change would be equal to
.
That would be the energy of a photon in that
spectrum line. Planck constant
relates the frequency of a photon to its energy:
, where
is the energy of the photon.
is the Planck constant.
is the frequency of that photon.
In this case,
. Hence,
.
Note that
.