Answer:
Part A → 7.82 atm
Part B → The unknown solution had the higher concentration
Part C → 0.83 mol/L
Explanation:
Part A
Osmotic pressure (π) = M . R. T . i
NaCl → Na⁺ + Cl⁻ (i =2)
0.923 g of NaCl must be dissolved in 100 mL of solution.
0.923 g / 58.45 g/m = 0.016 moles
Molarity is mol/L → 0.016 m / 0.1L = 0.16M
π = 0.16M . 0.08206 L.atm/molK . 298K . 2 ⇒ 7.82atm
Part. B
The solvent moves toward the solution of higher concentration (to dilute it) until the two solutions have the same concentration, or until gravity overtakes the osmotic pressure, Π. If the level of the unknown solution drops when it was connected to solution in part A, we can be sure that had a higher concentration.
Part. C
π = M . R . T
20.1 atm = M . 0.08206 L.atm/mol.K . 294K
20.1 atm / (0.08206 L.atm/mol.K . 294K) = 0.83 mol/L
Answer: the molecular formula of the compound is still the same i.e CO2
Explanation:
Answer:
It favors the forward reaction.
Explanation:
According to Le Chatelier's Principle, when a system at equilibrium suffers a perturbation, the system will react in order to counteract the effect of such perturbation.
If more reactant is added, the system will try to decrease its concentration. It will do so by favoring the forward reaction, decreasing the concentration of the reactant and increasing the concentration of the products, in order to re-establish the equilibrium.
Some characteristics of Ionic compounds by Mimiwhatsup: brittle, high melting point, conducts electricity when molten or dissolved in water.