Answer:
Perimeter = 18.7 units
Area = 13.5 units²
Step-by-step explanation:
Perimeter of ADEC = AD + DE + EC + AC
Length of AD = 3 units
By applying Pythagoras theorem in ΔDBE,
DE² = DB² + BE²
DE² = 3² + 3²
DE = √18
DE = 4.24 units
Length of EC = 3 units
By applying Pythagoras theorem in ΔABC,
AC² = AB² + BC²
AC² = 6² + 6²
AC = √72
AC = 8.49 units
Perimeter of ADEC = 3 + 4.24 + 3 + 8.49
= 18.73 units
≈ 18.7 units
Area of ADEC = Area of ΔABC - Area of ΔBDE
Area of ΔABC = 
= 
= 18 units²
Area of ΔBDE = 
= 
= 4.5 units²
Area of ADEC = 18 - 4.5
= 13.5 units²
Answer:
“The width of the compass is adjusted to DE, and an arc is drawn from point F.”
Answer:
The answer is 24
Step-by-step explanation:
24/4 is 6 and then you add 6 to 3 which is 9
Answer:
[Vertex form]
Step-by-step explanation:
Given function:

We need to find the vertex form which is.,

where
represents the co-ordinates of vertex.
We apply completing square method to do so.
We have

First of all we make sure that the leading co-efficient is =1.
In order to make the leading co-efficient is =1, we multiply each term with -3.


Isolating
and
terms on one side.
Subtracting both sides by 15.


In order to make the right side a perfect square trinomial, we will take half of the co-efficient of
term, square it and add it both sides side.
square of half of the co-efficient of
term = 
Adding 36 to both sides.


Since
is a perfect square of
, so, we can write as:

Subtracting 21 to both sides:


Dividing both sides by -3.

[Vertex form]
Assuming CDB is a straight line then angle ADB = 180-82=98