Answer:
Step-by-step explanation:
The question is not biased. It doesn't push the participants to answer one way or another.
However, the sample is biased. It does not represent the population.
The first and fourth options are correct.
Answer:
503
Step-by-step explanation:
For an arithmetic sequence, the n-th term is found by

To find
(the common difference) we can simply subtract one of the terms by the last, for example:

The common difference must be the same throughout the entire sequence, so we can do it once more just to be sure:

We also have to know that
stands for the first term of the sequence, which in this case is 311.
Now that we know this, let's find the 32nd term

Good luck!
All you do is add a zero on the end of this to make it to the nearest hundreth: 34.8(0)
That means that this is the correct order: 34.8, 36.43, 36.29 or Option B
Splitting up the interval of integration into
subintervals gives the partition
![\left[0,\dfrac1n\right],\left[\dfrac1n,\dfrac2n\right],\ldots,\left[\dfrac{n-1}n,1\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac1n%5Cright%5D%2C%5Cleft%5B%5Cdfrac1n%2C%5Cdfrac2n%5Cright%5D%2C%5Cldots%2C%5Cleft%5B%5Cdfrac%7Bn-1%7Dn%2C1%5Cright%5D)
Each subinterval has length
. The right endpoints of each subinterval follow the sequence

with
. Then the left-endpoint Riemann sum that approximates the definite integral is

and taking the limit as
gives the area exactly. We have
