LiBr.
<h3>Explanation</h3>
Note that the group number in this answer refers to the new IUPAC group number, which ranges from 1 to 18. Counts from the left. Start with the first two column (group 1 and 2), go on to the transition elements (Sc, Ti, etc. in group 3 through 12), and continue with the nonmetals (group 13 through 18).
Li is a group 1 metal. As a metal, it tends to form positive ions ("cations"). Metals in group 1 and 2 are <em>main group</em> metals. The charge on main group metal ions tends to be the same as the group number of the metal. Li is in group 1. The charge on an Li ion will be +1. Formula of the Li ion will be
.
Br is a group 17 nonmetal. As a nonmetal, it tends to form negative ions ("anions"). The charge on nonmetal ions excepting for H tends to equal the group number of the nonmetal minus 18. Br is in group 17. The charge on a Br ion will be 17 - 18 = -1. Formula of the Br ion will be 
All the ions in an ionic compound carry charge. However, some of the ions like
are positive. Others ions like
are negative. Charge on the two types of ions balance each other. As a result, the compound is <em>overall</em> neutral.
1 × (+1) + 1 × (-1) = 0. The positive charge on one
ion balances the negative charge on one
ion. The two ions would pair up at a 1:1 ratio.
The empirical formula for an ionic compound shows all the ions in the compound. Positive ions are written in front of negative ions.
is positive and
is negative. The formula shall also show the simplest ratio between the ions. For the compound between Li and Br, a 1:1 ratio will be the simplest. The "1" subscript in an empirical formula can be omitted. Hence the formula: LiBr.
The first blank can be filled with the Heliocentric model, and the second blank can be filled with Copernicus.
The heliocentric model known as heliocentrism was proposed by the Renaissance astronomer, mathematician, and the Catholic cleric Nicolaus Copernicus resulting in the Copernican revolution.
It is the astronomical model, in which the planets and the Earth revolve around the Sun positioned at the middle of the Solar system. Factually, the heliocentric model was in contrast to geocentrism, in which Earth is positioned at the center of the Solar system.
It takes 107 minutes 22 seconds and 96500 coulombs of charge produce 20.2 g of calcium.
The balanced equation for the reaction is,

The half-reaction of calcium is,

Mass of calcium = 20.2 g
The molecular mass of calcium = 40 u.
The number of moles calcium are,



One mole of Calcium is produced by 2 moles of electrons.
So, 0.5 moles of Calcium produce,


The charge required to produce 202 g of calcium is,



Current = 15 A
The time taken to produce 20.2 g of calcium is,




Therefore, 96500 columns of charge are required to produce 20.2 grams of calcium. And it takes 107 minutes and 22 seconds.
To know more about charge, refer to the below link:
brainly.com/question/14713274
#SPJ4