Na₂S(aq) + Cd(NO₃)₂(aq) = CdS(s) + 2NaNO₃(aq)
v=25.00 mL
c=0.0100 mmol/mL
M(Na₂S)=78.046 mg/mmol
n(Na₂S)=n{Cd(NO₃)₂}=cv
m(Na₂S)=M(Na₂S)n(Na₂S)=M(Na₂S)cv
m(Na₂S)=78.046*0.0100*25.00≈19.5 mg
When an atom shares electrons they form a covalent bond.
Answer:
The final temperature is 348.024°C.
Explanation:
Given data:
Specific heat of copper = 0.385 j/g.°C
Energy absorbed = 7.67 Kj (7.67×1000 = 7670 j)
Mass of copper = 62.0 g
Initial temperature T1 = 26.7°C
Final temperature T2 = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Q = m.c. ΔT
7670 J = 62.0 g × 0.385 j/g °C ×( T2- 26.7 °C
)
7670 J = 23.87 j.°C ×( T2- 26.7 °C
)
7670 J / 23.87 j/°C = T2- 26.7 °C
T2- 26.7 °C = 321.324°C
T2 = 321.324°C + 26.7 °C
T2 = 348.024°C
The final temperature is 348.024°C.
The nervous system sends signals to the muscles to shiver when our body temperature begins to drop to a lower than normal temperature. the slight movement of the muscles will work to bring temperature back to homeostasis