To solve this question you need to calculate the number of the gas molecule. The calculation would be:
PV=nRT
n=PV/RT
n= 1 atm * 40 L/ (0.082 L atm mol-1K-<span>1 * 298.15K)
</span>n= 1.636 moles
The volume at bottom of the lake would be:
PV=nRT
V= nRT/P
V= (1.636 mol * 277.15K* 0.082 L atm mol-1K-1 )/ 11 atm= <span>3.38 L</span>
The one on top is corrrect because the cell diagram will always contain one object or more
8xc take away 8xExplanation:
Answer:
The standard enthalpy change for the reaction at
is -2043.999kJ
Explanation:
Standard enthalpy change (
) for the given reaction is expressed as:
![\Delta H_{rxn}^{0}=[3mol\times \Delta H_{f}^{0}(CO_{2})_{g}]+[4mol\times \Delta H_{f}^{0}(H_{2}O)_{g}]-[1mol\times \Delta H_{f}^{0}(C_{3}H_{8})_{g}]-[5mol\times \Delta H_{f}^{0}(O_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%5E%7B0%7D%3D%5B3mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28CO_%7B2%7D%29_%7Bg%7D%5D%2B%5B4mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28H_%7B2%7DO%29_%7Bg%7D%5D-%5B1mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28C_%7B3%7DH_%7B8%7D%29_%7Bg%7D%5D-%5B5mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28O_%7B2%7D%29_%7Bg%7D%5D)
Where
refers standard enthalpy of formation
Plug in all the given values from literature in the above equation:
![\Delta H_{rxn}^{0}=[3mol\times (-393.509kJ/mol)]+[4mol\times (-241.818kJ/mol)]-[1mol\times (-103.8kJ/mol)]-[5mol\times (0kJ/mol)]=-2043.999kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%5E%7B0%7D%3D%5B3mol%5Ctimes%20%28-393.509kJ%2Fmol%29%5D%2B%5B4mol%5Ctimes%20%28-241.818kJ%2Fmol%29%5D-%5B1mol%5Ctimes%20%28-103.8kJ%2Fmol%29%5D-%5B5mol%5Ctimes%20%280kJ%2Fmol%29%5D%3D-2043.999kJ)
mol=35:101.11 g/mol=0.346
formula units = 0.346 x 6.02 x 10²³ = 2.082 x 10²³