<span>You need to have NAD+ as a source of oxidation for the pyruvate, as well as a supply of coenzyme A. CO2 is released by the pyruvate as a carboxyl group is removed</span>
CuCl2 + 2NaNO3 ----> Cu(NO3)2 + 2NaCl
using molar masses:-
Theoretical yields:-
63.54 + 2(35.45) g of CuCl2 produces 2(22.98 + 35.45) g of NaCl
134.44 g .................................................... 116.86 g
31.0 g ....................................................31.0 * 116.86 /134.44=26.95g
So percentage yield is 21.2* 100 / 26.95 = 78.7% to nearest tenth
Pute because I’m smart and I know the right answer
Positive because it keeps going ok
Answer:
The volume of the gas is 2.80 L.
Explanation:
An ideal gas is a theoretical gas that is considered to be made up of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
The Pressure (P) of a gas on the walls of the container that contains it, the Volume (V) it occupies, the Temperature (T) at which it is located and the amount of substance it contains (number of moles, n) are related from the equation known as Equation of State of Ideal Gases:
P*V = n*R*T
where R is the constant of ideal gases.
In this case:
- P= 2 atm
- V= ?
- n=0.223 moles
- R= 0.0821

- T=33 °C= 306 °K (being O°C= 273°K)
Replacing:
2 atm* V= 0.223 moles*0.0821
* 306 K
Solving:

V= 2.80 L
<u><em>The volume of the gas is 2.80 L.</em></u>