<span>0.06355391 mol
The balanced equation for the reaction is
Na2B4O7*10H2O + 2 HNO3 = 2 NaNO3 + 4 H3BO3 + 5 H2O
So for each mole of Borax to neutralize, it takes 2 moles of HNO3.
Calculate number of moles of Borax
0.2619 g / 381.372 g/mol = 0.0006867 mol
Moles of HNO3 used = 0.0006867 mol * 2 = 0.0013734 mol
Molarity is defined as moles per liter so divide the number of moles used by the volume in liters. So
0.0013734 / 0.02161 = 0.06355391 mol</span>
Answer:
the second one filter for dissolved
Explanation:
Answer:
use chemical equation to that answer
Answer:
, zirconium-103.
Explanation:
In a nuclear reaction, both the mass number and atomic number will conserve.
Let
represent the unknown particle.
The mass number of a particle is the number on the upper-left corner. The atomic number of a particle is the number on its lower-left corner under the mass number. For example, for the particle
,
is the mass number while
while
is the atomic number.
Sum of mass numbers on the left-hand side of the equation:
.
Note that there are three neutrons on the right-hand side of the equation. Sum of mass numbers on the right-hand side:
.
Mass number conserves. As a result,
.
Solve this equation for
:
.
Among the five choices, the only particle with a mass number of 103 is
. Make sure that atomic number also conserves.