Answer:
a)
If we call P(n) the population n years after 2010, the recurrence relation for the population of the world n years after 2010 would be
P(0) = 6.9 billion
P(n) = P(n-1)*(1.011)
b)
c)
Step-by-step explanation:
a)
If the growing rate is 1.1% in the year 2011 was
6.9 + 1.1% of 6.9 = 6.9 + 6.9*(0.011) = 6.9*(1.011)
In the year 2012, the new population was
6.9*(1.011) + 1.1% of 6.9*(1.011)
= 6.9*(1.011) + 6.9*(1.011)*(0.011) = 6.9*(1.011)*(1+0.011)
= 6.9*(1.011)*(1.011) =
Similarly, we can see that the population in 2013 was
If we call P(n) the population n years after 2010, the recurrence relation for the population of theworld n years after 2010 would be
P(0) = 6.9 billion
P(n) = P(n-1)*(1.011)
b)
In the year n after 2010, the population would be
c)
The population of the world in 2030, according to the formula, will be P(20)