Answer:
d) The stone will have about 50 joules of kinetic energy and 0 joules of potential energy .
Explanation:
Given :
Initial Potential energy ,
.
Initial Kinetic energy ,
. ( because ball is in rest )
Now , we know , kinetic energy is maximum when an object reaches ground .
Also , potential energy is zero when an object is in ground .
We know , by conservation of energy :
Initial total energy = Final total energy

Therefore , option d) is correct .
Complete question:
Consider the hypothetical reaction 4A + 2B → C + 3D
Over an interval of 4.0 s the average rate of change of the concentration of B was measured to be -0.0760 M/s. What is the final concentration of A at the end of this same interval if its concentration was initially 1.600 M?
Answer:
the final concentration of A is 0.992 M.
Explanation:
Given;
time of reaction, t = 4.0 s
rate of change of the concentration of B = -0.0760 M/s
initial concentration of A = 1.600 M
⇒Determine the rate of change of the concentration of A.
From the given reaction: 4A + 2B → C + 3D
2 moles of B ---------------> 4 moles of A
-0.0760 M/s of B -----------> x

⇒Determine the change in concentration of A after 4s;
ΔA = -0.152 M/s x 4s
ΔA = -0.608 M
⇒ Determine the final concentration of A after 4s
A = A₀ + ΔA
A = 1.6 M + (-0.608 M)
A = 1.6 M - 0.608 M
A = 0.992 M
Therefore, the final concentration of A is 0.992 M.
Answer:
Approximately
, assuming that the gravitational field strength is
.
Explanation:
Let
denote the required angular velocity of this Ferris wheel. Let
denote the mass of a particular passenger on this Ferris wheel.
At the topmost point of the Ferris wheel, there would be at most two forces acting on this passenger:
- Weight of the passenger (downwards),
, and possibly - Normal force
that the Ferris wheel exerts on this passenger (upwards.)
This passenger would feel "weightless" if the normal force on them is
- that is,
.
The net force on this passenger is
. Hence, when
, the net force on this passenger would be equal to
.
Passengers on this Ferris wheel are in a centripetal motion of angular velocity
around a circle of radius
. Thus, the centripetal acceleration of these passengers would be
. The net force on a passenger of mass
would be
.
Notice that
. Solve this equation for
, the angular speed of this Ferris wheel. Since
and
:
.
.
The question is asking for the angular velocity of this Ferris wheel in the unit
, where
. Apply unit conversion:
.
The area nearest to the earth's core is the densest..
So your answer would be letter choice ( D ) . . .
Hope it Helped :)
To determine the speed relative to the ground, since the ground is our reference frame, it would be v = 0, for the kid on the skateboard, you would need to take into account the speed that he/she is going and the speed of the keys thrown at.
I believe.