The mass for of aluminum that is produced by the decomposition of 5.0 Kg Al2O3 is 2647 g or 2.647 Kg
calculation
Write the equation for decomposition of Al2O3
Al2O3 = 2Al + 3 O2
find the moles of Al2O3 = mass/molar mass
convert 5 Kg to g = 5 x1000 = 5000 grams
molar mass of Al2O3 = 27 x2 + 16 x3 = 102 g/mol
moles =5000 g/ 102 g/mol = 49.0196 moles
by use of mole ratio between Al2O3 to Al which is 1:2 the moles of Al = 49.0196 x2 =98.0392 moles
mass of Al = moles x molar mass
= 98.0392 moles x 27g/mol = 2647 grams or 2647/1000 = 2.647 Kg
Answer:
Gina Should Put Rubber Tires Under The Synthetic Category
Gina Should Put Starch Under The Natural Category
Explanation:
Edge 2020
Answer:
92.72 kJ
Explanation:
2 N₂ (g) + O₂ (g) —-> 2 N₂O
According to question , one mole of N₂O requires 163.2 kJ of heat
Molecular weight of N₂O = 44 gm
25 g N₂O = 25 / 44 mole
25 / 44 mole will require 163.2 x 25 / 44 kJ
= 92.72 kJ
Answer:
C. The lowest-energy electron configuration of an atom has the maximum number of unpaired electrons, all of which have the same spin, in degenerate orbitals.
Explanation:
The Hund's rule is used to place the electrons in the orbitals is it states that:
1. Every orbital in a sublevel is singly occupied before any orbital is doubly occupied;
2. All of the electrons in singly occupied orbitals have the same spin.
So, the electrons first seek to fill the orbitals with the same energy (degenerate orbitals) before paring with electrons in a half-filled orbital. Orbitals doubly occupied have greater energy, so the lowest-energy electron configuration of an atom has the maximum number of unpaired electrons, and for the second statement, they have the same spin.
The other alternatives are correct, but they're not observed by the Hund's rule.