Answer:
fossil?..................
Answer:
0.2193 μm
Explanation:
The reaction showing the Photodissociation of ozone (O3) is given below as:
O₃ + hv --------------------------> O₂ + O⁺
H° (142.9) (0) (438kJ/mol).
The first thing to do here is to determine the change in the enthalpy of the total reaction, this can be done by subtracting the change in the enthalpy of the reactant from the change in enthalpy in the product. Hence, we have:
ΔH° = [438 kJ/mol + 247.5 kJ/mol] - (142.9) = 542.6 KJ/mol.
This value, that is 542.6 KJ/mol will then be used in the determination of the value for the maximum wavelength that could cause this photodissociation.
Therefore, the maximum wavelength could cause this photodissociation ≤ h × c/ E = [ 1.199 × 10⁻⁴]/ 542.6 = 2.193 × 10⁻⁷ = 0.2193 μm
Bromine attracts electrons more strongly. Cesium is In fact the least electro negative element.
Sodium is more likely to lose an electron because is is less electro negative. Strong electronegativity make the element want more electrons. Sodium has loose electrons with a lower electronegativity so it gives it up easier.
Explanation:
It should be decreasing, and the potential energy increasing, since Law of Conversation of Energy, right?
Also, if you think about what happens when it goes down, it loses potential and gains kinetic, so maybe the opposite should happen when it goes up.