Answer
:
2. Hydrogen forms bonds through the overlap of 1s atomic orbitals and the sharing of electrons between atoms. Carbon forms bonds through the overlapping of sp hybrid atomic orbitals and the sharing of electrons between carbon atoms.
Explanation:
The H-H bond is formed by the overlap of two 1s orbitals and the sharing of electrons between the two atoms.
A carbon atom must use the overlap of hybridized atomic orbitals and the sharing of electrons to bond with another carbon atoms.
1. is <em>wrong</em> because H can use only its <em>1s orbital</em> for bonding.
3. is <em>wrong</em> because C must <em>share electrons</em> to form a carbon-carbon bond.
4. is <em>wrong</em> because <em>C does NOT use overlapping of 2s orbitals</em> for bonding. It uses the overlap of hybridized orbitals.
5. is <em>wrong</em> because H must <em>share electrons</em> to form an H-H bond.
The required net ionic equation is; 2H^+(aq) + 2OH^-(aq)-----> 2H2O(l)
The molecular reaction equation is;
H2SeO3(aq) + 2KOH(aq) -----> K2SeO3(aq) + 2H2O(l)
The complete ionic equation is;
2H^+(aq) + SeO3^2-(aq) + 2K^+(aq) + 2OH^-(aq)-----> 2K^+(aq) + SeO3^2-(aq) + 2H2O(l)
Net ionic equation;
2H^+(aq) + 2OH^-(aq)-----> 2H2O(l)
We can clearly see that this is a neutralization reaction hence water is the product of the net ionic equation.
Learn more:brainly.com/question/25150590
The balanced chemical reaction for the described reaction above is,
Na2CO3 + 2HCl ---> 2NaCl + H2CO3
From the reaction, 1 mole of Na2CO3 is needed to produce 2 moles of NaCl. In terms of mass, 106 grams of Na2CO3 are needed to produce 116.9 grams of NaCl. From this,
(23.4 g NaCl) x (106 g Na2CO3 / 116.9 NaCl = 21.22 g Na2CO3
Thus, approximately 21.22 g Na2CO3 is needed for the desired reaction.
Lajdhskskdhskhdksnsjsndjs