Answer:
The number of moles of xenon are 1.69 mol.
Explanation:
Given data:
Number of moles of xenon = ?
Volume of gas = 37.8 L
Temperature = 273 K
Pressure = 1 atm
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will put the values in formula.
1 atm × 37.8 L = n × 0.0821 atm.L/ mol.K ×273 K
37.8 atm.L = n × 22.413 atm.L/ mol.
n = 37.8 atm.L / 22.413 atm.L/ mol.
n = 1.69 mol
The number of moles of xenon are 1.69.
Answer:
photo is blurred plese send photo clearly
Although the data for the experiment was not provided, we can offer a generalized answer in that when performing an experiment to achieve absolute zero temperatures, the value will never match the exact value.
<h3 /><h3>What is absolute zero?</h3>
Absolute zero is the lower limit of temperature. It is considered the coldest possible temperature that can exist. However, any attempt to reach this temperature in a controlled environment has failed, <u>scientists do not think it is possible to recreate this </u><u>temperature</u><u>. </u>
Therefore, we can confirm that the value of the absolute zero experiments did not match the accepted value. If the hypothesis was that it would be difficult or impossible to achieve, then the data would support the hypothesis, otherwise, it would fail to do so.
In summary, absolute zero is a temperature that cannot be recreated in a lab, so the value in this experiment does not match the accepted value and there is <u>no further exploration </u>to be done on this matter.
To learn more about absolute zero visit:
brainly.com/question/79835?referrer=searchResults
Answer:
Forming positive ions
Explanation:
A sodium atom has one electron in its outer shell. ... It will still have 11 positive protons but only 10 negative electrons. So, the overall charge is +1. A positive sign is added to the symbol for sodium, Na +.
Hope it helps
xoxo
<span>d. These elements make up most of the matter of the known universe</span>