Answer:
249 L
Explanation:
Step 1: Write the balanced equation
C₃H₈(g) + 5 O₂(g) → 3 CO₂(g) + 4 H₂O(g)
Step 2: Calculate the moles of CO₂ produced from 5.00 moles of C₃H₈
The molar ratio of C₃H₈ to CO₂ is 1:3. The moles of CO₂ produced are 3/1 × 5.00 mol = 15.0 mol
Step 3: Convert "30.0°C" to Kelvin
We will use the following expression.
K = °C + 273.15
K = 30.0°C + 273.15 = 303.2 K
Step 4: Calculate the volume of carbon dioxide
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T/P
V = 15.0 mol × 0.0821 atm.L/mol.K × 303.2 K/1.50 atm
V = 249 L
Answer:
Sound waves need to travel through a medium such as solids, liquids and gases. The sound waves move through each of these mediums by vibrating the molecules in the matter. The molecules in solids are packed very tightly. Liquids are not packed as tightly.Of the three mediums (gas, liquid, and solid) sound waves travel the slowest through gases, faster through liquids, and fastest through solids. Temperature also affects the speed of sound.Sound waves in air (and any fluid medium) are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves. A vibrating string can create longitudinal waves as depicted in the animation below.
Explanation:
Answer: 714 g Al2O3
Explanation: Solution attached
First convert mass of O2 to moles
Do the mole ratio between O2 and Al2O3 from the balanced equation.
Convert moles of Al2O3 to mass using its molar mass.
Answer:
plants take carbon dioxide out of the atmosphere and use the energy from sunlight to combine the carbon dioxide and water to form sugar and oxygen