Answer:
1.5 of mag 1 phos 1 oxygen
Explanation:
hope this helps well sorry i don't really know lol i tried
Why did you post this again? Because you're lazy and wanted people to not see my post? Once again, ONE QUESTION AT A TIME. We're here to help you with a tough question or work you through it, not do all your homework.
The concentration of ClO₂⁻ at equilibrium if the initial concentration of HClO₂ is 0.0654.
<h3>What is concentration?</h3>
The concentration of any substance is the quantity of that substance in per square of the space or container.
The reaction is
HClO₂ + H₂O <=> H₃O⁺ + ClO₂⁻
The pH is 0.454 M
Ka = [H₃O⁺][ClO₂⁻ ] / [HClO₂]
2. 25 × 10⁻² m = [x][x] / 0.454-x]
2 + 0.011 - 0.004994 = 0
solve the quadratic equation
x = 0.0654 = [H3O+] = [ClO2-]
pH = -log (H3O+)
pH = -log(0.0654)
pH = 1.2
equilibrium concentrations of
[HClO2] = 0.454 -x = 0.454 -0.0654 = 0.3886 M
[ClO2- ] = x = 0.0654
Thus, the equilibrium concentrations is 0.0654.
To learn more about concentration, refer to the link:
brainly.com/question/16645766
#SPJ4
Answer:
3.00 mol
Explanation:
Given data:
Mass of P₄ = 211 g
Mass of oxygen = 240 g
Moles of P₂O₅ = ?
Solution:
Chemical equation:
P₄ + 5O₂ → 2P₂O₅
Number of moles of P₄:
Number of moles = mass/ molar mass
Number of moles = 211 g / 123.88 g/mol
Number of moles = 1.7 mol
Number of moles of O₂ :
Number of moles = mass/ molar mass
Number of moles = 240 g / 32g/mol
Number of moles = 7.5 mol
Now we will compare the moles of product with reactant.
O₂ : P₂O₅
5 : 2
7.5 : 2/5×7.5 = 3.00
P₄ : P₂O₅
1 : 2
1.7 : 2×1.7 = 3.4 mol
Oxygen is limiting reactant so the number of moles of P₂O₅ are 3.00 mol.
Mass of P₂O₅:
Mass = number of moles × molar mass
Mass = 3 mol ×283.9 g/mol
Mass = 852 g