The subscript after the element indicates the number of atoms of that element in the molecule. So, in H20, the subscript after the H, which stands for hydrogen, is 2. This means that there are 2 hydrogen atoms in a water molecule.
Hope this helps! :)
The increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Kinetic energy of a particle is directly proportional to its temperature.
A ball initially at rest acquires kinetic energy when an external force is applied to it. As the person strikes the ball with a bat, the ball gains momentum which increases its kinetic energy of the ball.
Temperature on the other hand, is the measure of the average kinetic energy of a particle. Consequently, as the kinetic energy of the ball increases, the temperature of the ball increases as well.
Thus, we can conclude that the increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Learn more here: brainly.com/question/18833622
When resistance is constant, current is proportional to voltage. When 1/3 the voltage is applied, 1/3 the current will result.
(1/3)*(1.2 A) = 0.4 A
The resulting current will be 0.4 A.
Answer:
A. α = - 1.047 rad/s²
B. θ = 14.1 rad
C. θ = 2.24 rev
Explanation:
A.
We can use the first equation of motion to find the acceleration:
where,
ωf = final angular speed = 0 rad/s
ωi = initial angular speed = (30 rpm)(2π rad/1 rev)(1 min/60 s) = 3.14 rad/s
t = time = 3 s
α = angular acceleration = ?
Therefore,
<u>α = - 1.047 rad/s²</u>
B.
We can use the second equation of motion to find the angular distance:
<u>θ = 14.1 rad</u>
C.
θ = (14.1 rad)(1 rev/2π rad)
<u>θ = 2.24 rev</u>