Answer:
22 km/h
Explanation:
Given that,
Speed of Xavier, v = 14 km/h
He tosses a set of keys forward on the ground at 8 km/h, v' = 8 km/h
We need to find the speed of the keys relative to the ground. Let it is V.
As both Xavier and the keys are moving in same diretion. The relative speed wrt ground is given by :
V = v+v'
V= 14 + 8
V = 22 km/h
So, the speed of the keys relative to the ground is 22 km/h.
Answer:
Statement 1 and 3 are correct.
Explanation:
1. The mass moves downward, so the net acceleration of the block is straight downward.
2.The mass is sliding through the globe, so only the force of gravity is acting on the mass which pulls it in downward direction. The force of gravity has two components [mg sin∅] and [mg cos∅].
Earth's dynamic processes allow our planet to recycle air, surface materials, and water. The correct answer is D.
The strength of the electric field on the point charge at this distance will be 4000 V/m.
<h3>What is the strength of the electric field?</h3>
The strength of the electric field is the ratio of electric force per unit charge.
The given data in the problem is;
Qis the unit charge = 4.0 × 10⁻⁶ C
E is the strength of the electric field
R is the distance from point charge = 3 m
The strength of the electric field is;

Hence, the strength of the electric field on the point charge at this distance will be 4000 V/m.
To learn more about the strength of the electric field refer to the link;
brainly.com/question/15170044
#SPJ1
Answer:
3.0 seconds
Explanation:
We can solve the problem by considering the horizontal motion of the ball only. In fact, the ball moves by uniform motion (constant speed) along the horizontal direction, since there are no forces acting in this direction. The horizontal speed of the ball is given by:

and it does not change during the motion.
We also know that the ball travels a horizontal distance of d = 60 m, so we can find the time it takes to cover the distance by using the equation:
