<span>So we want to know which statement is true for the body of mass m=2000kg that is lifted to a height of h=15m in t=15 s. Lets calculate each of the following: Gravity force on the body is F=m*g=2000*9.81=19620 N so a is FALSE. Potential energy of the body when it is lifted to the height of 15 m is Ep=m*g*h=2000*9.81*15=294300 J so b is FALSE. Work to lift the body is: W=Fg*h=2000*9.81*15= Ep=294300 J so c is FALSE. Power P=W/t=294300/15=19620 W So d is TRUE. </span>
The given question is incomplete. The complete question is as follows.
A box of oranges which weighs 83 N is being pushed across a horizontal floor. As it moves, it is slowing at a constant rate of 0.90 m/s each second. The push force has a horizontal component of 20 N and a vertical component of 25 N downward. Calculate the coefficient of kinetic friction between the box and the floor.
Explanation:
The given data is as follows.
= 20 N,
= 25 N, a = -0.9
W = 83 N
m = 
= 8.46
Now, we will balance the forces along the y-component as follows.
N = W +
= 83 + 25 = 108 N
Now, balancing the forces along the x component as follows.
= ma
= 7.614 N
Also, we know that relation between force and coefficient of friction is as follows.

= 
= 0.0705
Thus, we can conclude that the coefficient of kinetic friction between the box and the floor is 0.0705.
Single
Displacement Reaction Definition. A
single displacement reaction is a chemical reaction where one reactant is exchanged for one ion of a second reactant. It is also known as a
single replacement reaction.
Radars are frequently used to identify distance and speed, such as how far away an object is or how fast it is moving. <span>The </span>radar<span> device can then use the change in frequency to </span>determine the speed<span> at which the </span>car<span> is moving. In laser-</span>speed<span> guns, waves of light are </span>used<span> in place of radio waves.</span>
The headlamp's concave mirror is open on one end, and the light bulb's filament is placed at or near the focus. (Sorry if this is Wrong)