1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margaret [11]
4 years ago
7

Simplify the imaginary number sqr -75

Mathematics
1 answer:
m_a_m_a [10]4 years ago
3 0

Answer:

5i\sqrt{3}

Step-by-step explanation:

Using the rule of radicals

\sqrt{a} × \sqrt{b} ⇔ \sqrt{ab}

and \sqrt{-1} = i

Given

\sqrt{-75}

= \sqrt{25(3)(-1)}

= \sqrt{25}  × \sqrt{3} × \sqrt{-1}

= 5 × \sqrt{3} × i

= 5i\sqrt{3}

You might be interested in
7/5=p/100<br> help me in this :(
velikii [3]

Answer:

p=140

Step-by-step explanation:

7/5=p/100

1.4=p/100

*100  *100

140=p

6 0
3 years ago
Read 2 more answers
Jenna used a probability simulator to roll a 12-sided number cube 100 times. Her results are shown in the table below: Number on
KATRIN_1 [288]

The probability would be 14 over 100.

We can tell this because by the table, the number 1 was rolled 14 total times. You can state the probability by expressing with the number of times rolled over total times rolled. Since it was rolled a total of 100 times, we are left with 14/100.

5 0
4 years ago
Show the following numbers on number line 3/2, 5/2, -3/2
pav-90 [236]

When you create the number line, put 0 in the middle. Basically you put all the numbers you got from least to greatest on the number.

Since -3/2 is less than 0, it will go to the left of 0.

Since 3/2 and 5/2 are greater than 0, it will go to the right of 0.

Remember to use sub points of 1.

Best of Luck!

3 0
3 years ago
Find the volume. need help asap!!
vlada-n [284]

Answer:

V ≈ 16.76 yd^3

Step-by-step explanation:

www.google.com/search?q=volume+of+a+cone

4 0
3 years ago
Find the particular solution of the differential equation?<br> /=5^3+9^2, when =1, =8
kipiarov [429]

Answer:

\displaystyle s = \frac{5t^4}{4} + \frac{9}{t} - \frac{9}{4}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Solving Differentials - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Step-by-step explanation:

*Note:

Ignore the Integration Constant C on the left hand side of the differential equation when integrating.

<u>Step 1: Define</u>

\displaystyle \frac{ds}{dt} = 5t^3 + \frac{9}{t^2}

t = 1

s = 8

<u>Step 2: Integrate</u>

  1. [Derivative] Rewrite [Leibniz's Notation]:                                                     \displaystyle ds = (5t^3 + \frac{9}{t^2})dt
  2. [Equality Property] Integrate both sides:                                                     \displaystyle \int {} \, ds = \int {(5t^3 + \frac{9}{t^2})} \, dt
  3. [Left Integral] Reverse Power Rule:                                                             \displaystyle s = \int {(5t^3 + \frac{9}{t^2})} \, dt
  4. [Right Integral] Rewrite [Integration Property - Addition]:                           \displaystyle s = \int {5t^3} \, dt + \int {\frac{9}{t^2}} \, dt
  5. [Right Integrals] Rewrite [Integration Property - Multiplied Constant]:     \displaystyle s = 5\int {t^3} \, dt + 9\int {\frac{1}{t^2}} \, dt
  6. [Right Integrals] Rewrite [Exponential Rule - Rewrite]:                               \displaystyle s = 5\int {t^3} \, dt + 9\int {t^{-2}} \, dt
  7. [Right Integrals] Reverse Power Rule:                                                         \displaystyle s = 5(\frac{t^4}{4}) + 9(\frac{t^{-1}}{-1}) + C
  8. [Right Integrals] Rewrite [Exponential Rule - Rewrite]:                               \displaystyle s = 5(\frac{t^4}{4}) + 9(\frac{1}{t}) + C
  9. Multiply:                                                                                                         \displaystyle s = \frac{5t^4}{4} + \frac{9}{t} + C

<u>Step 3: Solve</u>

  1. Substitute in variables:                                                                                 \displaystyle 8 = \frac{5(1)^4}{4} + \frac{9}{1} + C
  2. Evaluate exponents:                                                                                     \displaystyle 8 = \frac{5}{4} + \frac{9}{1} + C
  3. Divide:                                                                                                           \displaystyle 8 = \frac{5}{4} + 9 + C
  4. Add:                                                                                                               \displaystyle 8 = \frac{41}{4} + C
  5. [Subtraction Property of Equality] Isolate <em>C</em>:                                               \displaystyle \frac{-9}{4} = C
  6. Rewrite:                                                                                                          \displaystyle C = \frac{-9}{4}

Particular Solution: \displaystyle s = \frac{5t^4}{4} + \frac{9}{t} - \frac{9}{4}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Differentials Equations and Slope Fields

Book: College Calculus 10e

3 0
3 years ago
Other questions:
  • Find the perimeter of triangle ABC with vertices (2,4) (8,12) and (24,0)
    7·1 answer
  • Consider the formula d = rt, where d represents distance, r represents rate, and t represents time. How could the formula be rea
    10·1 answer
  • a pitcher of fruit punch holds 2 gallons .if 9 people share the entire pitcher equally ,how much punch does each person get.
    5·1 answer
  • What multiplies to negative 4 and adds to 7
    5·1 answer
  • Eva worked hours landsoacihg
    15·2 answers
  • Solve the system of equations 2x+7y=-5 and-x-6y=10
    15·1 answer
  • Solve each equation for y (get into slope-intercept/y=mx + b form): a) 10x + 5y = 20 b) 3x - 2y = 10 + 4x
    5·1 answer
  • (Simplify the expression and find its value when a = 5 and b = -3)<br> 2(a^2+ab)+3-ab
    9·1 answer
  • The period T (in seconds) of a pendulum is given by T = 24V), where I stands for the length (in feet) of the pendulum.
    6·1 answer
  • Spencer can do a piece of work in 20 days and Toby in 25 days. They began to work together.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!