the large bag is 5/6 lb, the smaller bags will be 1/3 lb, so it should be 5/6 ÷ 1/3
![\bf \cfrac{5}{6}\div \cfrac{1}{3}\implies \cfrac{5}{\underset{2}{~~\begin{matrix} 6 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}\cdot \cfrac{~~\begin{matrix} 3 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{1}\implies \cfrac{5}{2}\implies 2\frac{1}{2}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B5%7D%7B6%7D%5Cdiv%20%5Ccfrac%7B1%7D%7B3%7D%5Cimplies%20%5Ccfrac%7B5%7D%7B%5Cunderset%7B2%7D%7B~~%5Cbegin%7Bmatrix%7D%206%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%5Ccdot%20%5Ccfrac%7B~~%5Cbegin%7Bmatrix%7D%203%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7B1%7D%5Cimplies%20%5Ccfrac%7B5%7D%7B2%7D%5Cimplies%202%5Cfrac%7B1%7D%7B2%7D)
Answer:
The answer is B) b
Step-by-step explanation:
According to the Trapezoid area formula, the area of the trapezoid is [(2d+a+b) × c] ÷ 2, however the area also equals (d+b) × c.
So d+(a+b)/2=d+b
(a+b)/2=b
a+b=2b
a=b
hope this helps <3
The answer to this question is true
$29.99=$30
$30-$15=$15
Ace's profit is $15
A quadrilateral has 4 vertices and the sum of the measures of the interior angles is 360 degrees. There cannot be 4 diagonals in a quadrilateral.