Answer : <em>Her weight is lower on Venus because the acceleration due to gravity is lower.</em>
Explanation :
Venus is also called as Earth's twin. This is because both the mass and the size of Earth and Venus are almost same. The acceleration due to gravity on earth is
while on Venus is
.
So, when Shari measure her weight on Venus she found her weight is lower on Venus. This is because the acceleration due to gravity is lower on the surface of Venus as compared to the Earth.
Since, 
i.e. weight depends on g.
<em>So, correct prediction is (b)</em>
Answer:
The base runner
Explanation:
To know the correct answer to the question, we shall determine the time taken for the baseball and the base runner to get to the home plate. This is illustrated below:
For the baseball:
Horizontal velocity (u) = 30 m/s
Horizontal distance (s) = 60 m
Time (t) =?
s = ut
60 = 30 × t
Divide both side by 30
t = 60 / 30
t = 2 s
Thus, it will take the baseball 2 s to get to the home plate.
For the base runner:
Horizontal velocity (u) = 5 m/s
Horizontal distance (s) = 5 m
Time (t) =?
s = ut
5 = 5 × t
Divide both side by 5
t = 5 / 5
t = 1 s
Thus, it will take the base runner 1 s to get to the home plate.
SUMMARY:
Time taken for the baseball to get to the home plate = 2 s
Time taken for the base runner to get to the home plate = 1 s
From the calculations made above, we can conclude that the base runner will arrive at the home plate first because it took him 1 s to get to the home plate whereas the baseball took 2 s to get there.
Answer:
18000 J
Explanation:
From the question given above, the following data were obtained:
At point 4:
Mass of cart = 600 Kg
Velocity of cart (v) = 7.745 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 600 × 7.745²
KE = 300 × 7.745²
KE ≈ 18000 J
Therefore, the mechanical energy of the cart at point 4 is 18000 J
Answer:
1.) answer B
2.) answer D
3.) answer A
Explanation:
In all of these problems, it is essential to draw pictures in order to understand which trigonometric function to use according to the angle that the vector in question forms with the component requested. For all of them try to picture a right angle triangle with the vector as the hypotenuse, and the components as the triangle's shorter sides. Please refer to the three pictures attached as image for this answer a,d notice that the vector quantity known for all cases is represented in red, and the component to find is represented in green.
Problem 1) : the vector velocity makes an angle of 24 degrees with the edge of the table. So picture that vector as the hypotenuse of a right angle triangle for which you know the value: 1.8 m/s
So in this case, where you know the angle, the hypotenuse, and need to find the adjacent side to the angle, you use the cosine function as follows:
requested component 
which we round to 1.6 to match answer C).
For problem 2.) wee need to find the component opposite to the given angle in the triangle for which we also know the hypotenuse. So we use the sine function as follows:
requested component 
which we round to 135.9 m to match answer D).
For problem 3.) we need to find the horizontal component to the acceleration which corresponds to the adjacent side to the known angle, so we use the cosine function as follows:
requested component 
which we round tp 7.7 to match answer A).