Answer:
y = 4x - 12
Step-by-step explanation:
y - 4x = -12
Solve for y using inverse operations.
y - 4x = -12
+4x +4x
y = 4x - 12
Answer:
The answer is 12 I believe
Step-by-step explanation:
You just want to add all the numbers you already have and subtract that with your perimeter to get 12. So 7+15+16=38; 50-38=12.
Answer:
Option B:
Function A has a vertical asymptote at x = 1
Function B has a vertical asymptote at x = -3
Step-by-step explanation:
A function f(x) has a vertical asymptote if:

This means that if there is a value k for which f(x) has infinity or a -infinity then x = k is a vertical asymptote of f(x). Therefore, the closer x to k approaches, the closer the function becomes to infinity.
We can calculate the asymptote for function A.

Then, function A has a vertical asymptote at x = 1.
The asymptote of function B can be easily observed in the graph. Note that the function b is not defined for x = -3 and when x is closest to -3, f(x) approaches infinity.
Therefore x = -3 is asintota of function B.
Therefore the correct answer is option B.
Answer:
5.5+7.25−5.5−7.25 = 0
Step-by-step explanation:
To be honest, you shouldn't have to show work for an equation like this. But this is the answer. Hope it helped.
Answer:
For number 3 the answer is vertical angels are congruent.
For number 4 the answer is Reflexive property.
And for number 5 i believe the answer would be Angle Side Angel
Step-by-step explanation:
i hope this helps