Answer:
bombarding it with an energetic particle
Explanation: nuclear reaction, a change in the identity or characteristics of an atomic nucleus, induced by bombarding it with an energetic particle. The bombarding particle may be an alpha particle, a gamma-ray photon, a neutron, a proton, or a heavy-ion.
Answer:
<h2>Density = 0.5 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
<h3>
</h3>
From the question
mass = 60 g
volume = 120 mL
Substitute the values into the above formula and solve
That's
<h3>
</h3>
We have the final answer as
<h3>Density = 0.5 g/mL</h3>
Hope this helps you
Answer:
Percentage lithium by mass in Lithium carbonate sample = 19.0%
Explanation:
Atomic mass of lithium = 7.0 g; atomic mass of Chlorine = 35.5 g; atomic mass of carbon = 12.0 g; atomic mass of oxygen = 16.0 g
Molar mass of lithium chloride, LiCl = 7 + 35.5 = 42.5 g
Percentage by mass of lithium in LiCl = (7/42.5) * 100% = 16.4 % aproximately 16%
Molar mass of lithium carbonate, Li₂CO₃ = 7 * 2 + 12 + 16 * 3 =74.0 g
Percentage by mass of lithium in Li₂CO₃ = (14/74) * 100% = 18.9 % approximately 19%
Mass of Lithium carbonate sample = 2 * 42.5 = 85.0 g
mass of lithium in 85.0 g Li₂CO₃ = 19% * 85.0 g = 16.15 g
Percentage by mass of lithium in 85.0 g Li₂CO₃ = (16.15/85.0) * 100 % = 19.0%
Percentage lithium by mass in Lithium carbonate sample = 19.0%
The number of protons found in the nucleus equals the number of electrons that surround it, giving the atom a neutral charge (neutrons have zero charge). Most of an atom's mass is in its nucleus; the mass of an electron is only 1/1836 the mass of the lightest nucleus, that of hydrogen.Hoped this helped
Answer:
Explanation:
Hello.
In this case, since this is a system in which the water is heated up and the metal is cooled down in a calorimeter which is not affected by the heat lose-gain process, we can infer that the heat lost by the metal is gained be water, it means that we can write:
Thus, in terms of masses, specific heats and temperatures we can write:
Whereas the equilibrium temperature is the given final temperature of 28.4 °C and we can compute the specific heat of the metal as shown below:
Plugging the values in and since the density of water is 1.00 g/mL so the mass is 80.0g, we obtain:
Best regards!