The answer is the solution saturated than more dissolved with is C
Answer:
See the answer below
Explanation:
<em>Since the experiment is set out to determine the melting point of the white solid, after missing the melting point due to distraction, there are two possible solutions and both involves a repeat of the experiment.</em>
1. The first one is to allow the molten substance to solidify again and then repeat the experiment. This time around, a critical attention should be paid to be able to notice the melting point temperature once the temperature gets to 132 C.
2. The second solution would be discard the molten substance and repeat the experiment with the a new solid one. Similarly, critical attention should be paid once the temperature gets to 132 C since it is sure that the melting point lies within 132 and 138 C.
Answer:

Explanation:
We are asked to find how many moles are in 4.8 × 10²³ fluorine atoms. We convert atoms to moles using Avogadro's Number or 6.022 × 10²³. This is the number of particles (atoms, molecules, formula units, etc.) in 1 mole of a substance. In this case, the particles are atoms of fluorine.
We will convert using dimensional analysis and set up a ratio using Avogadro's Number.

We are converting 4.8 × 10²³ fluorine atoms to moles, so we multiply the ratio by this number.

Flip the ratio so the units of atoms of fluorine cancel each other out.


Condense into 1 fraction.

Divide.

The original measurement of atoms has 2 significant figures, so our answer must have the same. For the number we found, that is the hundredths place. The 7 in the thousandths tells us to round the 9 in the hundredths place up to a 0. Then, we also have to round the 7 in the tenths place up to an 8.

4.8 × 10²³ fluorine atoms are equal to <u>0.80 moles of fluorine.</u>
<span>Food couldn’t reach the stomach without the esophagus and the throat.</span>
I think the answer is D not too sure tho