Answer:
0.0253 M/s
Explanation:
From the reaction
N₂ + 3H₂ → 2NH₃
The rate of reaction can be written as
Rate = -
= -
= + ![\frac{1}{2} \frac{d[NH_3]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%5Cfrac%7Bd%5BNH_3%5D%7D%7Bdt%7D)
From the above rate equation we can conclude that the rate of reaction of N₂ is equal to one third of the rate of reaction of H₂,
So,
Rate of reaction of molecular nitrogen = 
Upon calculation, we get rate of reaction of molecular nitrogen = 0.0253 M/s
I believe the answer is C !
<span>The answer is C)
mechanical advantage (MA = slope/height)
here length of slope = 9Hheight = H so mechanical advantage = ---- 9H/H= 9
</span>
They achieve stable structures by sharing their single, unpaired electron.
Answer:
Four substitution products are obtained. The carbocation that forms can react with either nucleophile (H2O or CH3OH) from either the top or bottom side of the molecule
Explanation:
An SN1 reaction usually involves the formation of a carbocation in the slow rate determining step. This carbocation is now attacked by a nucleophile in a subsequent fast step to give the desired product.
However, the product is obtained as a racemic mixture because the nucleophile may attack from the top or bottom of the carbocation hence both attacks are equally probable.
The attacking nucleophile in this case may be water or CH3OH