oxygen and silicon I believe
The given question is incomplete. The complete question is:
Suppose a current of 0.920 A is passed through an electroplating cell with an aqueous solution of agno3 in the cathode compartment for 47.0 seconds. Calculate the mass of pure silver deposited on a metal object made into the cathode of the cell.
Answer: 0.0484 g
Explanation:
where Q= quantity of electricity in coloumbs
I = current in amperes = 0.920 A
t= time in seconds = 47.0 sec

96500 Coloumb of electricity electrolyzes 1 mole of Ag
43.24 C of electricity deposits =
of Ag
Thus the mass of pure silver deposited on a metal object made into the cathode of the cell is 0.0484 g
The statement which correctly describe the relationship between the reactants and the yield is this: 'the theoretical yield is calculated from the amount of the limiting reactants present'. The theoretical yields is the ideal maximum amount of a product that can be produced during a chemical reaction while the limiting reactant is the reactant that determines the maximum amount of product that can be formed.
Answer: Halogens tend to attract electrons when bonding (Option C)
Explanation: Halogens being non metals have greater electronegativities hence, attract electrons and making the statement disputed. Nobel gases are highly stable; this explains why they are nonreactive. They do not form chemical bonds because they only have a little tendency to either gain or lose an electron; on the other hand, halogens are reactive because they only need one additional electron to complete their octet.
The balanced chemical reaction is written as:
<span>4C(s) + S8(s) → 4CS2(l)
We are given the amount of carbon and sulfur to be used in the reaction. We need to determine first the limiting reactant to be able to solve this correctly.
</span>7.70 g C ( 1 mol / 12.01 g) =0.64 mol C
19.7 g S8 ( 1 mol / 256.48 g) = 0.08 mol S8
The limiting reactant would be S8. We use this amount to calculate.
0.08 mol S8 ( 4 mol CS2 / 1 mol S8 ) ( 256.48 g / 1 mol ) = 78.8 g CS2