Answer:
1.89 nol Cu(NO3)2
Explanation:
if you calculate it it will be 1.89
When we have this balanced equation for a reaction:
Fe(OH)2(s) ↔ Fe+2 + 2OH-
when Fe(OH)2 give 1 mole of Fe+2 & 2 mol of OH-
so we can assume [Fe+2] = X and [OH-] = 2 X
when Ksp = [Fe+2][OH-]^2
and have Ksp = 4.87x10^-17
[Fe+2]= X
[OH-] = 2X
so by substitution
4.87x10^-17 = X*(2X)^2
∴X^3 = 4.8x10^-17 / 4
∴the molar solubility X = 2.3x10^-6 M
Answer:
C. An electron has a high probability of being in certain regions.
Explanation:
In the electron cloud model, there are no electron-orbits around the nucleus but a cloud. This cloud has various densities with respect to distance from the nucleus. The most dense region of the cloud (which is the region close to the nucleus) is where electrons has the highest probability of existence.
The model explains that an electron a greater chance of being in the region closer to the nucleus. Thus, an electron has a high probability of being in certain region of the cloud about the central nucleus. And an electrostatic force exists between the nucleus and the electrons.
The answer is 35.4335
Hope this helped! (Plz mark me brainliest!)
Answer:
The standard enthalpy of formation of NOCl(g) at 25 ºC is 105 kJ/mol
Explanation:
The ∆H (heat of reaction) of the combustion reaction is the heat that accompanies the entire reaction. For its calculation you must make the total sum of all the heats of the products and of the reagents affected by their stoichiometric coefficient (number of molecules of each compound that participates in the reaction) and finally subtract them:
Enthalpy of the reaction= ΔH = ∑Hproducts - ∑Hreactants
In this case, you have: 2 NOCl(g) → 2 NO(g) + Cl₂(g)
So, ΔH=
Knowing:
- ΔH= 75.5 kJ/mol
= 90.25 kJ/mol
= 0 (For the formation of one mole of a pure element the heat of formation is 0, in this caseyou have as a pure compound the chlorine Cl₂)
=?
Replacing:
75.5 kJ/mol=2* 90.25 kJ/mol + 0 - 
Solving
-
=75.5 kJ/mol - 2*90.25 kJ/mol
-
=-105 kJ/mol
=105 kJ/mol
<u><em>The standard enthalpy of formation of NOCl(g) at 25 ºC is 105 kJ/mol</em></u>