Answer:
d. The gold(III) ion is most easily reduced.
Explanation:
The standard reduction potentials are
Au³⁺ + 3e⁻ ⟶ Au; 1.50 V
Hg²⁺ + 2e⁻ ⟶ Hg; 0.85 V
Zn²⁺ + 2e⁻ ⟶ Zn; -0.76 V
Na⁺ + e⁻ ⟶ Na; -2.71 V
A <em>more positive voltage</em> means that there is a <em>stronger driving force</em> for the reaction.
Thus, Au³⁺ is the best acceptor of electrons.
Reduction Is Gain of electrons and, Au³⁺ is gaining electrons, so
Au³⁺ is most easily reduced.
Formula 1!!!!!!!!!!!!!!!!!!!!!!!!!!
Since nickles atomicnumber is 28, that means it has 28 protons, which are positively charged. To cancel out the positive charge and make it nuetral, there isalso 28 electrons which are negatively charged.
Nickel has 31 neutrons because an atoms mass is the number of protons + neutrons. The # of protons is 28. The mass # is 59. So, there are 31 neutrons.
Buffer solution resist the change in pH upon addition of small amount of strong acid or strong base.
Buffer consists of weak acid as HF / and its conjugate base NaF
When strong acid as HCl is added to buffer, it respond with its conjugate base to convert the strong acid to weak acid like this:
HCl (S.A) + NaF → NaCl + HF (W.A)
moles of HF we already have = M * V(in liters)
= 0.0955 M * 0.033 L = 3.15 x 10⁻³ mole
moles of HCl added = 8.00 x 10⁻⁵ mole
one mole HCl reacts with 1 mole NaF to give 1 mole HF
so the amount added to HF = 8.00 x 10⁻⁵
Total moles of HF present = (3.15 x 10⁻³) + (8.00 x 10⁻⁵) = 3.23 x 10⁻³ mole
Answer:
Option b is show the chemical property of sodium....