Answer:
independent variable -- different batteries
dependent variable -- the time that clock stop
Explanation:
In an experiment or a research study, there are two type of variables that can affect the result of the experiment or the conclusion. They are independent variable and the dependent variable.
An independent variable may be defined as that variable in an experiment which can be changed or can be controlled in the scientific experiment in order to test the effect on the dependent variable. It cannot be changed by other variables.
On the other hand, dependent variable are those are those which can be altered or change that can affect the experiment.
In the context, Emily uses the different types of the batteries as an independent variable and the time where the clock stopped in the dependent variable in her research.
Yeah, it would be B (1.2 x 102 m^3) because the measurement gave it away even though other numbers were higher, however, the measurements for those were smaller in size.
Answer:
384.2 K
Explanation:
First we convert 27 °C to K:
- 27 °C + 273.16 = 300.16 K
With the absolute temperature we can use <em>Charles' law </em>to solve this problem. This law states that at constant pressure:
Where in this case:
We input the data:
300.16 K * 1600 m³ = T₂ * 1250 m³
And solve for T₂:
T₂ = 384.2 K
Answer:
Molar mass→ 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Explanation:
Let's apply the formula for freezing point depression:
ΔT = Kf . m
ΔT = 74.2°C - 73.4°C → 0.8°C
Difference between the freezing T° of pure solvent and freezing T° of solution
Kf = Cryoscopic constant → 5.5°C/m
So, if we replace in the formula
ΔT = Kf . m → ΔT / Kf = m
0.8°C / 5.5 m/°C = m → 0.0516 mol/kg
These are the moles in 1 kg of solvent so let's find out the moles in our mass of solvent which is 0.125 kg
0.0516 mol/kg . 0.125 kg = 6.45×10⁻³ moles. Now we can determine the molar mass:
Molar mass (mol/kg) → 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol