Answer:
a) n = 9.9 b) E₁₀ = 19.25 eV
Explanation:
Solving the Scrodinger equation for the electronegative box we get
Eₙ = (h² / 8m L²2) n²
where l is the distance L = 1.40 nm = 1.40 10⁻⁹ m and n the quantum number
In this case En = 19 eV let us reduce to the SI system
En = 19 eV (1.6 10⁻¹⁹ J / 1 eV) = 30.4 10⁻¹⁹ J
n = √ (In 8 m L² / h²)
let's calculate
n = √ (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 30.4 10⁻¹⁹ / (6.63 10⁻³⁴)²
n = √ (98) n = 9.9
since n must be an integer, we approximate them to 10
b) We substitute for the calculation of energy
In = (h² / 8mL2² n²
In = (6.63 10⁻³⁴) 2 / (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 10²
E₁₀ = 3.08 10⁻¹⁸ J
we reduce eV
E₁₀ = 3.08 10⁻¹⁸ j (1ev / 1.6 10⁻¹⁹J)
E₁₀ = 1.925 101 eV
E₁₀ = 19.25 eV
the result with significant figures is
E₁₀ = 19.25 eV
How do you write a letter to the editor?
Open the letter with a simple salutation. ...
Grab the reader's attention. ...
Explain what the letter is about at the start. ...
Explain why the issue is important. ...
Give evidence for any praise or criticism. ...
State your opinion about what should be done. ...
Keep it brief. ...
Sign the letter.
Close the switch would be the correct answer
Period = 6 seconds and
.
<u>Explanation:</u>
We have , the motion of a swing that requires 6 seconds to complete one cycle. Period is the amount of time needed to complete one oscillation . And in question it's given that 6 seconds is needed to complete one cycle. Hence ,Period of the motion of a swing is 6 seconds . Frequency is the number of vibrations produced per second and is calculated with the formula of
. SI unit of frequency is Hertz or Hz. We know that time period is 6 seconds so frequency =
⇒ 
⇒ 
⇒ 
Therefore , Period = 6 seconds and
.
A quadrilateral with only one pair of parallel sides.
<span>a small carpal bone in the base of the hand, articulating with the metacarpal of the index finger.
</span>