Answer:
Kinetic energy is energy in motion so therefor if you increase the velocity or in your case speed the kinetic energy also has to increase
Explanation:
Cm^3 is same as mL
13.5 g / 5 mL = 2.7 g/mL
look up densities of metals
aluminum has a density of 2.7 g/mL
The time spent in the air by the ball at the given momentum is 6.43 s.
The given parameters;
- <em>momentum of the ball, P = 0.9 kgm/s</em>
- <em>weight of the ball, W = 0.14 N</em>
The impulse experienced by the ball is calculated as follows;

where;
is impulse
is change in momentum
The time of motion of the ball is calculated as follows;

Thus, the time spent in the air by the ball at the given momentum is 6.43 s.
Learn more here:brainly.com/question/13468390
To develop the problem it is necessary to apply the equations related to the moment of inertia.
The given values can be defined as,




According to the definition of the moment of inertia applied to the exercise we can arrive at the equation that,

Where n is the number of spokes necessary to construct the wheel.


Replacing the values at the general equation we have,

Solving for n,

Therefore the number of spokes necessary to construct the wheel is 36
PART B) The mass of the wheel is given by the sum of all masses and the total spokes, then



Therefore the mass of the wheel must be of 1.36Kg
Impulse = Ft = (m)(delta v)
delta v = change in velocity = velocity final - velocity initial.
= -22m/s - +18m/s = -40m/s.
mdeltav = (0.40kg)(-40m/s) = -16kgm/s or -16Ns.