Answer:
1st – Place the film canister on the <u>scale</u>.
2nd – Slide the large <u>weight </u>to the right until the arm drops below the line and then move it back one notch.
3rd – Repeat this process with the <u>top</u> weight. When the arm moves below the line, back it up one groove.
4th – Slide the <u>small </u>weight on the front beam until the <u>lines</u> match up.
5th – Add the amounts on each beam to find the total <u>mass </u>to the nearest tenth of a gram.
Explanation:
The triple beam balance is an instrument that is used in measuring the mass of substances to a very high degree of precision. The reading error is given by ±0.05 grams. The triple beam balance as the name implies has three beams that measure substances of different mass levels.
The beams are categorized as small, medium, and large. There is a balance on which the substance to be weighed is placed directly upon. To use this measuring device, the procedures mentioned above are followed.
I believe the answer is stored energy.
Answer: The smallest effort = 300N
Explanation:
Using one of the condition for the attainment of equilibrium:
Clockwise moment = anticlockwise moments
900 × 1 = 3 × M
Where M = the weight of the strong man
3M = 900
M = 900/3 = 300N
Therefore, 300N is the smallest effort that the strongman can use to lift the goat
Answer:
B) t = 1.83 [s]
A) y = 16.51 [m]
Explanation:
To solve this problem we must use the following equation of kinematics.
where:
Vf = final velocity = 0
Vo = initial velocity = 18 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time [s]
Note: the negative sign in the above equation means that the acceleration of gravity is acting in the opposite direction to the motion.
A) The maximum height is reached when the final velocity of the ball is zero.
0 = 18 - (9.81*t)
9.81*t = 18
t = 18/9.81
t = 1.83 [s], we found the answer for B.
Now using the following equation.
where:
y = elevation [m]
Yo = initial elevation = 0
y = 18*(1.83) - 0.5*9.81*(1.83)²
y = 16.51 [m]