Answer: $817.35
Step-by-step explanation:
150x4 = 600
600+217.35 = 817.35
Answer:
Step-by-step explanation:
5x + 2 = 4x - 9
Collecting like terms
5x - 4x = -9 - 2
x = -11
Answer:
The best estimate of the number of times out of 39 that Ariana is on time to class is 27.
Step-by-step explanation:
For each class, there are only two possible outcomes. Either Ariana is on time, or she is not. The probability of Ariana being on time for a class is independent of other classes. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
Probability of exactly x sucesses on n repeated trials, with p probability.
The expected value of the binomial distribution is:

The probability that Ariana is on time for a given class is 69 percent.
This means that 
If there are 39 classes during the semester, what is the best estimate of the number of times out of 39 that Ariana is on time to class
This is E(X) when n = 39. So

Rounding
The best estimate of the number of times out of 39 that Ariana is on time to class is 27.
Let’s say, hypothetically speaking, you chose the second marble without replacing the first marble so, events are hypothetically dependent. Events are dependent if the occurrence of one hypothetical event hypothetically does affect the likelihood that the other events occur. The probably of two or more dependent events A and B is the probability of A times the probability of B after A hypothetically occurs
P(A and B) = P(A) x P(B after A)
Choose the first marble
The total number of hypothetical marbles are, hypothetically speaking, 4 on a hypothetical basis, and there is one red marble.
P(red)=1/4
Choose the second marble
Without hypothetically replacing the hypothetical first marble, you choose the hypothetical marble, hypothetically speaking. So, the total hypothetical number of marbles are, hypothetically, 3, and there is, hypothetically, one green marble.
P(green) = 1/3
The probability of choosing red and then, hypothetically, green is:
P(red and green) = P(red) x P(green)
=1/4 x 1/3
= 1/12
P(red and green) is hypothetically equal to 1/12 on a hypothetical account.
Final hypothetical answer: 1/12