Answer:
θ = 28°
Explanation:
For this exercise We will use the second law and Newton, let's set a System of horizontal and vertical.
X axis
Fₓ = m a
Nₓ = m a
Where the acceleration is centripetal
a = v² / r
The only force that we must decompose is normal, let's use trigonometry
sin θ = Nₓ / N
cos θ =
/ N
Nₓ = N sin θ
= N cos θ
Let's replace
N sin θ = m v² / r
Y Axis
- W = 0
N cos θ = mg
Let's divide the two equations of Newton's second law
Sin θ / cos θ = v² / g r
tan θ = v² / g r
θ = tan⁻¹ (v² / g r)
We reduce the speed to the SI system
v = 61 km / h (1000 m / 1 km) (1h / 3600 s) = 16.94 m / s
Let's calculate
θ = tan⁻¹ (16.94 2 / (9.8 55.1)
θ = tan⁻¹ (0.5317)
θ = 28°
Answer:
2.63 cm
Explanation:
Hooke's law gives that the force F is equal to cy where c is spring constant and x is extension
Making c the subject of the formula then

Since F is gm but taking the given mass to be F

By substitution now considering F to be 3.3 kg

I don't think so it would be some where between 9 and 10
We have a wave function: D(y,t) and we want to know some things about it. 1. The direction the wave is travelling is negative y direction or -y. 2. Since sound waves are longitudinal waves, this sound wave is oscillating along the y axis. 3. The wavelength we can get from k=2π/λ, k is the wave number, λ is the wavelength. So λ=2π/k=6.28/8.96=0.7 m. 4. Before i get the wave speed i will calculate the period of oscillation. It can be calculated from: ω=2πf where ω is angular frequency and f is wave frequency. So f=ω/2π=3140/6.28=500 Hz and the period is T=1/f=1/500=0.002 s. 5. Wave speed is v=λ*f= 0.7*500=350 m/s.
For starters, this question isn’t really about relativity. It’s about
energy, and E=mc^2 only makes sense if energy has the units of
(mass)*(velocity)^2. So we might as well ask: why is kinetic energy
defined as KE = ½*mv^2?