Complete Question
A thin, horizontal, 12-cm-diameter copper plate is charged to 4.4 nC . Assume that the electrons are uniformly distributed on the surface. What is the strength of the electric field 0.1 mm above the center of the top surface of the plate?
Answer:
The values is 
Explanation:
From the question we are told that
The diameter is 
The charge is 
The distance from the center is 
Generally the radius is mathematically represented as

=> 
=> 
Generally electric field is mathematically represented as
![E = \frac{Q}{ 2\epsilon_o } [1 - \frac{k}{\sqrt{r^2 + k^2 } } ]](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7BQ%7D%7B%202%5Cepsilon_o%20%7D%20%5B1%20-%20%5Cfrac%7Bk%7D%7B%5Csqrt%7Br%5E2%20%2B%20%20k%5E2%20%7D%20%7D%20%5D)
substituting values
![E = \frac{4.4 *10^{-9}}{ 2* (8.85*10^{-12}) } [1 - \frac{(1.00 *10^{-4})}{\sqrt{(0.06)^2 + (1.0*10^{-4})^2 } } ]](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7B4.4%20%2A10%5E%7B-9%7D%7D%7B%202%2A%20%288.85%2A10%5E%7B-12%7D%29%20%7D%20%5B1%20-%20%5Cfrac%7B%281.00%20%2A10%5E%7B-4%7D%29%7D%7B%5Csqrt%7B%280.06%29%5E2%20%2B%20%20%281.0%2A10%5E%7B-4%7D%29%5E2%20%7D%20%7D%20%5D)

Answer:
-963.93 m/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


The acceleration of Superman would be -963.93 m/s² from Lois' perspective
Explanation:
Light rays that pass close to the black hole get caught and cannot escape. so what ends up happening to the light is that it starts bending due to the strong gravitational force of the black hole.
8.15m. La altura de la casa de la cual se deja caer un objeto que tarda en caer
es de 8.15m.
La clave para resolver este problema es mediante caída libre, la velocidad inicial del objeto es 0 por lo que podemos calcular la altura h de la casa mediante la relación
.
Conocemos la gravedad
y el tiempo en que tarda en caer el objeto
, sustituyendo los valores tenemos que:

Explanation:
Given:
Final speed of mass A = Va
Final speed of mass B = Vb
Mass of A = Ma
Mass of B = Mb
Ma = 2 × Mb
By conservation of linear momentum,
0 = Ma × Va + Mb × Vb
0 = 2 × Mb × Va + Mb × Vb
Vb = - 2 × Va
Energy of the spring, U = 1/2 × k × x^2
1/2 k x² = 1/2 × Ma × Va² + 1/2 × Mb × Vb²
35 = 1/2 × Ma × Va² + 1/2 × Mb × Vb²
Ma × Va² + Mb × Vb² = 70
2 × Mb (-Vb/2)² + Mb × Vb² = 70
1/2 × Mb × Vb² + Mb × Vb² = 70
3/2 × Mb × Vb² = 70
Mb × Vb² = 140/3
= 46.7 J
Ma = 2 × Mb and Vb = - 2 × Va
Ma/2 × (4 × Va²) = 140/3
Ma × Va² = 70/3
Kinetic energy of mass A, KEa = 1/2 × Ma × Va² = 23.3 J
Kinetic energy of mass B = 1/2 × Mb × Vb² = 46.7 J