Answer: option (D)
Explanation:
The potential energy of each of the students is given below as
P.E(student A) = mgh, where m = mass of student A, g is acceleration due to gravity and h = height of the high dive structure.
The mass of student B is twice as much as that of A, hence his mass is 2m and his potential energy is given below as
P.E ( student B) =2mgh = 2(mgh)
Recall that the relationship between potential energy and work done is that
Work done = - (change in potential)
For student A, work done = - mgh
For student B, work done = - 2mgh
From the equations above it can be seen that student B will do twice the work in getting to the high dive structure than student A hence validating option D.
Answer:
Miller Indices are [2, 4, 3]
Solution:
As per the question:
Lattice Constant, C = 
Intercepts along the three axes:



Now,
Miller Indices gives the vector representation of the atomic plane orientation in the lattice and are found by taking the reciprocal of the intercepts.
Now, for the Miller Indices along the three axes:
a = 
b = 
c = 
To find the Miller indices, we divide a, b and c by reciprocal of lattice constant 'C' respectively:
a' = 
b' = 
c' = 
In free fall, the only force acting on an object is gravity. The force of gravity is an unbalanced force, which causes an object to accelerate. In the absence of air, two objects with different masses fall at exactly the same rate of acceleration.
Answer:
the charge will be neutral.
Explanation:According a book, metals want to "lose" electrons to achieve noble gas configuration. But at the same time, copper ions in a galvanic element are going to gain electrons from a zinc electrode. Why is it so? Is it because one of them HAS to gain/lose electrons, and zinc wins out in terms of achieving noble gas configuration?