Answer:
63.5 °C
Explanation:
The expression for the calculation of work done is shown below as:
Where, P is the pressure
is the change in volume
Also,
Considering the ideal gas equation as:-

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 8.314 J/ K mol
So,

Also, for change in volume at constant pressure, the above equation can be written as;-

So, putting in the expression of the work done, we get that:-
Given, initial temperature = 28.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28.0 + 273.15) K = 301.15 K
W=1770 J
n = 6 moles
So,
Thus,


The temperature in Celsius = 336.63-273.15 °C = 63.5 °C
<u>The final temperature is:- 63.5 °C</u>
From wave speed formula, period is 1.96 × 10^-15 seconds per cycle and the frequency is 5.1 × 10^14 Hertz
<h3>
What is Frequency ?</h3>
The frequency of a wave is the number of complete revolution per second made by a vibrating body.
Given that the wavelength of the yellow light from a sodium flame is 589 nm. This light originated from a sodium atom in the hot flame.
(a) In the sodium atom from which this light originated, the period of the simple harmonic motion which was the source of this electromagnetic wave will be found by using the formula
v = λ/T
Where
- v = speed of light = 300,000,000 m/s
- λ = wavelength = 589 × 10^-9 m
Substitute all the parameters
300000000 = 589 × 10^-9/T
T = 589 × 10^-9/300000000
T = 1.96 × 10^-15 seconds per cycle.
(b) The frequency of this light wave is the reciprocal of its period. That is,
F = 1/T
F = 1/1.96 × 10^-15
F = 5.1 × 10^14 Hertz
Therefore, the period of the wave is 1.96 × 10^-15 seconds per cycle and its frequency is 5.1 × 10^14 Hertz
Learn more about Light Wave here: brainly.com/question/10728818
#SPJ1
Answer:
Part a)

Part b)

Part c)

Part d)
from t = 0 to t = 4.9 s
so the reading of the scale will be same as that of weight of the block
Then its speed will reduce to zero in next 3.2 s
from t = 4.9 to t = 8.1 s
The reading of the scale will be less than the actual mass
Explanation:
Part a)
When elevator is ascending with constant speed then we will have



So it will read same as that of the mass

Part b)
When elevator is decending with constant speed then we will have



So it will read same as that of the mass

Part c)
When elevator is ascending with constant speed 39 m/s and acceleration 10 m/s/s then we will have



Reading is given as



Part d)
Here the speed of the elevator is constant initially
from t = 0 to t = 4.9 s
so the reading of the scale will be same as that of weight of the block
Then its speed will reduce to zero in next 3.2 s
from t = 4.9 to t = 8.1 s
The reading of the scale will be less than the actual mass
<h2>
Option C is the correct answer.</h2>
Explanation:
Specific gravity of fluid = 0.750
Density of fluid = Specific gravity of fluid x Density of water
Density of fluid = 0.750 x 1000
Density of fluid = 750 kg/m³
Mass of fluid = 22.5 kg
We have
Mass = Volume x Density
22.5 = Volume x 750
Volume = 0.03 m³ = 30 L
Option C is the correct answer.