Answer:. Option c
Explanation: the speed of an electromagnetic wave is simply the vector product of the magnetic field and the electric field.
The direction of the velocity is the direction of the electromagnetic wave.
The wave is already moving towards the negative y axis (-j) and the magnetic field is already pointing towards the positive x axis (i)
From cross product of unit vectors
i × j = k
i × k = - j
With the second identity, we can see that the electric field will be pointing towards the positive of the x axis (k).
Option c is validated
(a) The capacitance of the capacitor is:

and the voltage applied across its plates is

The relationship between the charge Q on each plate of the capacitor, the capacitance and the voltage is:

and re-arranging it we find the charge stored in the capacitor:

(b) The electrical potential energy stored in a capacitor is given by

where C is the capacitance and V is the voltage. The new voltage is

so the energy stored in the capacitor is
ThIs is the same type of problem
find out the time value
3 = 1/2*a*T^2
6/10 = t^2
t = 0.77 seconds
and the distance is given 5 m
thus speed ,= distance/time
speed = 5/0.77
= 6.45 m/s
Answer:
its 45 over 6
Explanation:the answer is in the question
Answer:
A) If one travels around a closed path adding the voltages for which one enters the negative reference and subtracting the voltages for which one enters the positive reference, the total is zero.
Explanation:
Kirchhoff's voltage law deals with the conservation of energy when the current flows in a closed-loop path.
It states that the algebraic sum of the voltages around any closed loop in a circuit is always zero.
In other words, the algebraic sum of all the potential differences through a loop must be equal to zero.