<u>Buffers</u> function by absorbing excess hydrogen or hydroxide ions.
Answer: with? i can help:))
Explanation:
hmu love
The reaction of iron (III) oxide and aluminum is initiated by heat released from a small amount "starter mixture". This reaction is an oxidation-reduction reaction, a single replacement reaction, producing great quantities of heat (flame and sparks) and a stream of molten iron and aluminum oxide which pours out of a hole in the bottom of the pot into sand.
The balanced chemical equation for this reaction is:
2 Al(s) + Fe2O3(s) --> 2Fe(s) + Al2O3(s) + 850 kJ/mol
Curriculum Notes
This chemical reaction can be used to demonstrate an exothermic reaction, a single replacement or oxidation-reduction reaction, and the connection between ∆H calculated for this reaction using heats of formation and Hess' Law and calculating ∆H for this reaction using qrxn = mc∆T and the moles of limiting reactant. This reaction also illustrates the role of activation energy in a chemical reaction. The thermite mixture must be raised to a high temperature before it will react.
To determine how much thermal energy is released in this reaction, heats of formation values and Hess' Law can be used.
By definition, the deltaHfo of an element in its standard state is zero.
2 Al(s) + Fe2O3(s) --> 2Fe (s) + Al2O3 (s)
The deltaH for this reaction is the sum of the deltaHfo's of the products - the sum of the deltaHfo's of the reactants (multiplying each by their stoichiometric coefficient in the balanced reaction equation), i.e.:
deltaHorxn = (1 mol)(deltaHfoAl2O3) + (2 mol)(deltaHfoFe) - (1 mol)(deltaHfoFe2O3) - (2 mol)(deltaHfoAl)
deltaHorxn = (1 mol)(-1,669.8 kJ/mol) + (2 mol)(0) - (1 mol)(-822.2 kJ/mol) - (2mol)(0 kJ/mol)
deltaHorxn = -847.6 kJ
The melting point of iron is 1530°C (or 2790°F).
MARK ME BRAINLIEST
Answer:
100.8 °C
Explanation:
The Clausius-clapeyron equation is:
-Δ
Where 'ΔHvap' is the enthalpy of vaporization; 'R' is the molar gas constant (8.314 j/mol); 'T1' is the temperature at the pressure 'P1' and 'T2' is the temperature at the pressure 'P2'
Isolating for T2 gives:

(sorry for 'deltaHvap' I can not input symbols into equations)
thus T2=100.8 °C
According to my calculations the correct Answer is C. +694. The answers A B and D Are incorrect. It cannot be A because I said it also cannot be B because C=H. The answer would not be D because balls in your jaws = +1192 And the answer will be CORRECT ANSWER C=+694