Explanation:
A guitar string vibrates when we strikes it. It starts vibrating in several modes simultaneously. It stretches between the saddle and the nut. This distance represents one-half wavelength.
Now if we consider that the string forms a circle, then we have an interpretation of an electron which vibrates in the orbit surrounding the nucleus. We are aware that electrons have wavelength. If the circumference of the orbit happens to be the integer multiple of wavelength
, then the orbit is "allowed" since "the electron will retraces its own path."
This explains the line spectrum and not a continuous spectrum.
A line spectrum refers an electron that jumps between the specific energy levels, thus producing only specific colors.
<u>Answer:</u>
Those cells that develop differently are referred to Specialised Cells.
<u>
</u><u>Explanation:</u>
Specialised cells are the one that is assigned to perform a specific role. Every specialised cell in the body is assigned to do their own job. The special features in them help them to perform their functions effectively.
Examples of specialised cells are- red blood cells (they are responsible to carry oxygen in the body), nerve cells (specialises in transmitting electrical signals) and muscle cells (brings body parts together).
Empirical formula: The formula consist of proportions of the elements which is present in the compound or the simplest whole number ratios of atoms.
Now, molecular formula is equal to the product of n (ratio) and empirical formula.
Molecular formula =
(1)
molecular formula =
(given)
Since, 6 is the smallest subscript in above molecular formula to get the simpler whole number of atoms. Therefore, divide all the subscripts i.e. number of carbon atoms (12), number of hydrogen atoms (24) and number of oxygen atoms (6) by 6.
empirical formula becomes 
Thus, according to the formula (1)
Hence, empirical formula of given molecular formula is 