Answer A
Oxidation.
hope this helps!
Answer:
Explanation:
Isotopes are atoms of elements that have the same atomic number but different mass number hence ISOTOPY. Radioactive Isotopes on the other hand are unstable as they either undergo Alpha decay, beta decay or gamma decay compared to stable isotopes.
Radioactive elements decay at varyinf rates as such the rate of radioactive decay is used in the characterization of radioactive element and mostly expressed in terms of the half life of the radioactive elements.
Half life is the time taken for half of the total atoms of an elements to decay into half of its initial sizes. for example, the half life of radium-226 is 1622 years, it implies that if we have 1000000 radium atoms at the beginning, then at the end of 1622years, 500000 would have disintegrated. These phenomenon can never be experienced by stable isotopes as such they can not be used in carbon dating techniques. reason why uranium-238 is mostly and commonly used in the earth crust to estimate the ages of rocks because it has a half life of 4.5 x 10^9 years.
And also, the radioactive isotopes of most common light element are short, they have very short half life (few days or weeks) and they decay rapidly to vanshing point, as such, they are not found in nature to any reasonable extent.
Answer with Explanation:
A candle relights when a match is held above the wick because its trail of smoke still contains some of the wax. When candles are burned, the heat of the flame turns the the wax (which is originally solid) into liquid (commonly near the wick) and then evaporates as gas. The vaporized wax actually protect the wick and this is the reason why it is not burned. So, when you put off a candle, the vaporized wax is still present near the wick. This, remember, holds heat and light energy. Thus, this explains why the candle can be relighted once you hold a match above the wick. It then allows the match to ignite.
Thus, this explains the answer.
Explanation:
The given data is as follows.


Now, according to Michaelis-Menten kinetics,
![V_{o} = V_{max} \times [\frac{S}{(S + Km)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%20V_%7Bmax%7D%20%5Ctimes%20%5B%5Cfrac%7BS%7D%7B%28S%20%2B%20Km%29%7D%5D)
where, S = substrate concentration =
M
Now, putting the given values into the above formula as follows.
![V_{o} = V_{max} \times [\frac{S}{(S + Km)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%20V_%7Bmax%7D%20%5Ctimes%20%5B%5Cfrac%7BS%7D%7B%28S%20%2B%20Km%29%7D%5D)
![V_{o} = 6.8 \times 10^{-10} \mu mol/min \times [\frac{10.4 \times 10^{-6} M}{(10.4 \times 10^{-6}M + 5.2 \times 10^{-6} M)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%206.8%20%5Ctimes%2010%5E%7B-10%7D%20%5Cmu%20mol%2Fmin%20%5Ctimes%20%5B%5Cfrac%7B10.4%20%5Ctimes%2010%5E%7B-6%7D%20M%7D%7B%2810.4%20%5Ctimes%2010%5E%7B-6%7DM%20%2B%205.2%20%5Ctimes%2010%5E%7B-6%7D%20M%29%7D%5D)

= 
This means that
would approache
.
Answer: Atomic number, atomic mass, and relative atomic mass
Explanation: