The kinetic energy K given to the helium nucleus is equal to its potential energy, which is

where q=2e is the charge of the helium nucleus, and

is the potential difference applied to it.
Since we know the kinetic energy, we have

and from this we can find the potential difference:
There's the acceleration of the car that provides a force and the normal force of the seat cushion which pushes upwards against the passenger
Given Information:
Magnetic field = B = 1×10⁻³ T
Frequency = f = 72.5 Hz
Diameter of cell = d = 7.60 µm = 7.60×10⁻⁶ m
Required Information:
Maximum Emf = ?
Answer:
Maximum Emf = 20.66×10⁻¹² volts
Explanation:
The maximum emf generated around the perimeter of a cell in a field is given by
Emf = BAωcos(ωt)
Where A is the area, B is the magnetic field and ω is frequency in rad/sec
For maximum emf cos(ωt) = 1
Emf = BAω
Area is given by
A = πr²
A = π(d/2)²
A = π(7.60×10⁻⁶/2)²
A = 45.36×10⁻¹² m²
We know that,
ω = 2πf
ω = 2π(72.5)
ω = 455.53 rad/sec
Finally, the emf is,
Emf = BAω
Emf = 1×10⁻³*45.36×10⁻¹²*455.53
Emf = 20.66×10⁻¹² volts
Therefore, the maximum emf generated around the perimeter of the cell is 20.66×10⁻¹² volts
Answer:
<u>We are given: </u>
initial velocity (u) = 0 m/s
final velocity (v) = 10 m/s
displacement (s) = 20 m
acceleration (a) = a m/s/s
<u>Solving for 'a'</u>
From the third equation of motion:
v² - u² = 2as
replacing the variables
(10)² - (0)² = 2(a)(20)
100 = 40a
a = 100 / 40
a = 2.5 m/s²
<span>Newton's Third Law of Action-Reaction is that for each and every action that happens, there is an equal and opposite reaction to it. In the scenario of a roller coaster, this is when you push down on the seat of the roller coaster as it flies along and the seat pushes back against you.</span>