Answer:
a) v = 2,9992 10⁸ m / s
, b) Eo = 375 V / m
, B = 1.25 10⁻⁶ T,
c) λ = 3,157 10⁻⁷ m, f = 9.50 10¹⁴ Hz
, T = 1.05 10⁻¹⁵ s
, UV
Explanation:
In this problem they give us the equation of the traveling wave
E = 375 cos [1.99 10⁷ x + 5.97 10¹⁵ t]
a) what the wave velocity
all waves must meet
v = λ f
In this case, because of an electromagnetic wave, the speed must be the speed of light.
k = 2π / λ
λ = 2π / k
λ = 2π / 1.99 10⁷
λ = 3,157 10⁻⁷ m
w = 2π f
f = w / 2 π
f = 5.97 10¹⁵ / 2π
f = 9.50 10¹⁴ Hz
the wave speed is
v = 3,157 10⁻⁷ 9.50 10¹⁴
v = 2,9992 10⁸ m / s
b) The electric field is
Eo = 375 V / m
to find the magnetic field we use
E / B = c
B = E / c
B = 375 / 2,9992 10⁸
B = 1.25 10⁻⁶ T
c) The period is
T = 1 / f
T = 1 / 9.50 10¹⁴
T = 1.05 10⁻¹⁵ s
the wavelength value is
λ = 3,157 10-7 m (109 nm / 1m) = 315.7 nm
this wavelength corresponds to the ultraviolet
The light refects ofthe sides
Answer:

Explanation:
Given that,
Mass of the bowling ball, m = 5 kg
Radius of the ball, r = 11 cm = 0.11 m
Angular velocity with which the ball rolls, 
To find,
The ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball.
Solution,
The translational kinetic energy of the ball is :



The rotational kinetic energy of the ball is :



Ratio of translational to the rotational kinetic energy as :

So, the ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball is 5:2
Cathode Ray Tube i think?
Answer:
14.035087719298246 ≈ 14 hours
Explanation:
just subtract the 4000 and the 11000 from 23000 which gives you 8000. And then divide that my 570