The wavelength, which represents the size of the smallest detectable detail that uses ultraviolet light , is calculated as follows: 3×
/ 1.72×
or approximately 1.74×
m.
The distance between the two positive, two negative, or two minimal points on the waveform is known as the wavelength of the wave. The following formula expresses the relationship between the frequency and wavelength of light:
f = c / λ
where, f = frequency of light
c = speed of light
λ = wavelength of light
Given data = f = 1.72×
Hz
Therefore, λ = 3×
/ 1.72×![10^{15}](https://tex.z-dn.net/?f=10%5E%7B15%7D)
λ = 1.74×
m
The wavelength, which represents the size of the smallest detectable detail that uses ultraviolet light , is calculated as follows: 3×
/ 1.72×
or approximately 1.74×
m.
Learn more about light here;
brainly.com/question/15200315
#SPJ4
Answer:
The angular velocity is
Explanation:
Generally the acceleration experienced by the propeller blade's is broken down into
The Radial acceleration which is mathematically represented as
![a_r = \frac{v^2}{r} = w^2r](https://tex.z-dn.net/?f=a_r%20%3D%20%5Cfrac%7Bv%5E2%7D%7Br%7D%20%20%3D%20w%5E2r)
And the Tangential acceleration which is mathematically represented as
![a_r = \alpha r](https://tex.z-dn.net/?f=a_r%20%3D%20%5Calpha%20r)
The net acceleration is evaluated as
![a = \sqrt{a_r^2 + a_t^2}](https://tex.z-dn.net/?f=a%20%3D%20%5Csqrt%7Ba_r%5E2%20%2B%20a_t%5E2%7D)
Now since angular speed varies directly with angular acceleration so when acceleration is maximum the angular velocity is maximum also and this point if the propeller blade's tip exceeds it the blade would fracture
So at maximum angular acceleration we a have
![a_{max} = \sqrt{a_r^2 + a_t^2}](https://tex.z-dn.net/?f=a_%7Bmax%7D%20%3D%20%5Csqrt%7Ba_r%5E2%20%2B%20a_t%5E2%7D)
![a_{max}^2 = a_r^2 + a_t^2](https://tex.z-dn.net/?f=a_%7Bmax%7D%5E2%20%3D%20a_r%5E2%20%2B%20a_t%5E2)
![a_{max}^2 = (w^2r)^2 + (\alpha r)^2](https://tex.z-dn.net/?f=a_%7Bmax%7D%5E2%20%3D%20%28w%5E2r%29%5E2%20%2B%20%28%5Calpha%20r%29%5E2)
![a_{max}^2 = r^2 w^4 + r^2 \alpha ^2](https://tex.z-dn.net/?f=a_%7Bmax%7D%5E2%20%3D%20%20r%5E2%20w%5E4%20%2B%20r%5E2%20%5Calpha%20%5E2)
![a_{max}^2 = r^2 (w^4 + \alpha^2 )](https://tex.z-dn.net/?f=a_%7Bmax%7D%5E2%20%3D%20r%5E2%20%28w%5E4%20%2B%20%5Calpha%5E2%20%29)
![w^4 +\alpha ^2 = \frac{a_{max}^2}{r^2}](https://tex.z-dn.net/?f=w%5E4%20%2B%5Calpha%20%5E2%20%3D%20%5Cfrac%7Ba_%7Bmax%7D%5E2%7D%7Br%5E2%7D)
![w^4 = \frac{a_{max}^2}{r^2} - \alpha ^2](https://tex.z-dn.net/?f=w%5E4%20%3D%20%5Cfrac%7Ba_%7Bmax%7D%5E2%7D%7Br%5E2%7D%20%20-%20%5Calpha%20%5E2)
Answer:
Explanation:A covalent bond is formed when electrons are shared between non-metal atoms, and the positive nuclei are attracted towards the pair of negative bonded electrons. ... Hence, the hydrogen bond is weaker than ionic and covalent bonds. Example: Water molecules are held to each other by intermolecular forces of attraction.
Answer:
a) speed when Jack sees the pot : 12.92 meters per second
b) height difference 163.115 meters
Explanation:
First to calculate te initial speed we use the acceleration formula:
a= v1-v0/t
Acceleration being gravity's acceleration (9.8 m/s^2)
v1 being the speed when Jill sees the pot
v0 when Jack sees it
and t the time between
Solving for v0 it would be
v1 - a*t = v0
replacing
![58 m/s - 9.8 m/s^2 *4.6 s = v0 = 12.92 m/s](https://tex.z-dn.net/?f=58%20m%2Fs%20-%20%209.8%20m%2Fs%5E2%20%2A4.6%20s%20%3D%20v0%20%3D%2012.92%20m%2Fs)
For the second question we use the position formula setting y0 and t0 as the position and time when jack sees the pot. (and setting the positive axis downward I.E. one meter below jack would be 1m not -1m)
The formula is
![y0 + v0*t + 1/2 g *t^2 = yt](https://tex.z-dn.net/?f=y0%20%2B%20v0%2At%20%2B%201%2F2%20g%20%2At%5E2%20%3D%20yt)
replacing
![0m + 12.92m/s* 4.6 s + 1/2 * 9.8 m/s^2 * (4.6 s)^2 = 163.115 m](https://tex.z-dn.net/?f=0m%20%2B%2012.92m%2Fs%2A%204.6%20s%20%2B%201%2F2%20%2A%209.8%20m%2Fs%5E2%20%2A%20%284.6%20s%29%5E2%20%3D%20163.115%20m)
Relative to the positive horizontal axis, rope 1 makes an angle of 90 + 20 = 110 degrees, while rope 2 makes an angle of 90 - 30 = 60 degrees.
By Newton's second law,
- the net horizontal force acting on the beam is
![R_1 \cos(110^\circ) + R_2 \cos(60^\circ) = 0](https://tex.z-dn.net/?f=R_1%20%5Ccos%28110%5E%5Ccirc%29%20%2B%20R_2%20%5Ccos%2860%5E%5Ccirc%29%20%3D%200)
where
are the magnitudes of the tensions in ropes 1 and 2, respectively;
- the net vertical force acting on the beam is
![R_1 \sin(110^\circ) + R_2 \sin(60^\circ) - mg = 0](https://tex.z-dn.net/?f=R_1%20%5Csin%28110%5E%5Ccirc%29%20%2B%20R_2%20%5Csin%2860%5E%5Ccirc%29%20-%20mg%20%3D%200)
where
and
.
Eliminating
, we have
![\sin(60^\circ) \bigg(R_1 \cos(110^\circ) + R_2 \cos(60^\circ)\bigg) - \cos(60^\circ) \bigg(R_1 \sin(110^\circ) + R_2 \sin(60^\circ)\bigg) = 0\sin(60^\circ) - mg\cos(60^\circ)](https://tex.z-dn.net/?f=%5Csin%2860%5E%5Ccirc%29%20%5Cbigg%28R_1%20%5Ccos%28110%5E%5Ccirc%29%20%2B%20R_2%20%5Ccos%2860%5E%5Ccirc%29%5Cbigg%29%20-%20%5Ccos%2860%5E%5Ccirc%29%20%5Cbigg%28R_1%20%5Csin%28110%5E%5Ccirc%29%20%2B%20R_2%20%5Csin%2860%5E%5Ccirc%29%5Cbigg%29%20%3D%200%5Csin%2860%5E%5Ccirc%29%20-%20mg%5Ccos%2860%5E%5Ccirc%29)
![R_1 \bigg(\sin(60^\circ) \cos(110^\circ) - \cos(60^\circ) \sin(110^\circ)\bigg) = -\dfrac{mg}2](https://tex.z-dn.net/?f=R_1%20%5Cbigg%28%5Csin%2860%5E%5Ccirc%29%20%5Ccos%28110%5E%5Ccirc%29%20-%20%5Ccos%2860%5E%5Ccirc%29%20%5Csin%28110%5E%5Ccirc%29%5Cbigg%29%20%3D%20-%5Cdfrac%7Bmg%7D2)
![R_1 \sin(60^\circ - 110^\circ) = -\dfrac{mg}2](https://tex.z-dn.net/?f=R_1%20%5Csin%2860%5E%5Ccirc%20-%20110%5E%5Ccirc%29%20%3D%20-%5Cdfrac%7Bmg%7D2)
![-R_1 \sin(50^\circ) = -\dfrac{mg}2](https://tex.z-dn.net/?f=-R_1%20%5Csin%2850%5E%5Ccirc%29%20%3D%20-%5Cdfrac%7Bmg%7D2)
![R_1 = \dfrac{mg}{2\sin(50^\circ)} \approx \boxed{8300\,\rm N}](https://tex.z-dn.net/?f=R_1%20%3D%20%5Cdfrac%7Bmg%7D%7B2%5Csin%2850%5E%5Ccirc%29%7D%20%5Capprox%20%5Cboxed%7B8300%5C%2C%5Crm%20N%7D)
Solve for
.
![\dfrac{mg\cos(110^\circ)}{2\sin(50^\circ)} + R_2 \cos(60^\circ) = 0](https://tex.z-dn.net/?f=%5Cdfrac%7Bmg%5Ccos%28110%5E%5Ccirc%29%7D%7B2%5Csin%2850%5E%5Ccirc%29%7D%20%2B%20R_2%20%5Ccos%2860%5E%5Ccirc%29%20%3D%200)
![\dfrac{R_2}2 = -mg\cot(110^\circ)](https://tex.z-dn.net/?f=%5Cdfrac%7BR_2%7D2%20%3D%20-mg%5Ccot%28110%5E%5Ccirc%29)
![R_2 = -2mg\cot(110^\circ) \approx \boxed{9300\,\rm N}](https://tex.z-dn.net/?f=R_2%20%3D%20-2mg%5Ccot%28110%5E%5Ccirc%29%20%5Capprox%20%5Cboxed%7B9300%5C%2C%5Crm%20N%7D)